Display options
Share it on

Front Cell Neurosci. 2015 Aug 26;9:333. doi: 10.3389/fncel.2015.00333. eCollection 2015.

Cdc42 and RhoA reveal different spatio-temporal dynamics upon local stimulation with Semaphorin-3A.

Frontiers in cellular neuroscience

Federico Iseppon, Luisa M R Napolitano, Vincent Torre, Dan Cojoc

Affiliations

  1. Neurobiology Sector, International School for Advanced Studies Trieste, Italy.
  2. Neurobiology Sector, International School for Advanced Studies Trieste, Italy ; Structural Biology Laboratory, Elettra-Sincrotrone Trieste S.C.p.A. Trieste, Italy.
  3. Institute of Materials - National Research Council Trieste, Italy.

PMID: 26379503 PMCID: PMC4549648 DOI: 10.3389/fncel.2015.00333

Abstract

Small RhoGTPases, such as Cdc42 and RhoA, are key players in integrating external cues and intracellular signaling pathways that regulate growth cone (GC) motility. Indeed, Cdc42 is involved in actin polymerization and filopodia formation, whereas RhoA induces GC collapse and neurite retraction through actomyosin contraction. In this study we employed Förster Resonance Energy Transfer (FRET) microscopy to study the spatio-temporal dynamics of Cdc42 and RhoA in GCs in response to local Semaphorin-3A (Sema3A) stimulation obtained with lipid vesicles filled with Sema3A and positioned near the selected GC using optical tweezers. We found that Cdc42 and RhoA were activated at the leading edge of NG108-15 neuroblastoma cells during spontaneous cycles of protrusion and retraction, respectively. The release of Sema3A brought to a progressive activation of RhoA within 30 s from the stimulus in the central region of the GC that collapsed and retracted. In contrast, the same stimulation evoked waves of Cdc42 activation propagating away from the stimulated region. A more localized stimulation obtained with Sema3A coated beads placed on the GC, led to Cdc42 active waves that propagated in a retrograde manner with a mean period of 70 s, and followed by GC retraction. Therefore, Sema3A activates both Cdc42 and RhoA with a complex and different spatial-temporal dynamics.

Keywords: Cdc42; FRET; GC retraction; NG108-15 cell line; RhoA; Semaphorin-3A; local stimulation

References

  1. Cell. 1992 Aug 7;70(3):389-99 - PubMed
  2. Mol Biol Cell. 2009 Feb;20(4):1167-79 - PubMed
  3. Mol Cell Biol. 2000 Jan;20(1):158-72 - PubMed
  4. Curr Biol. 2003 Apr 1;13(7):534-45 - PubMed
  5. Mol Cell Biol. 1997 Mar;17(3):1201-11 - PubMed
  6. PLoS Comput Biol. 2012;8(3):e1002402 - PubMed
  7. Cold Spring Harb Perspect Biol. 2010 Feb;2(2):a001818 - PubMed
  8. Nat Neurosci. 1999 Sep;2(9):798-803 - PubMed
  9. Sci Rep. 2012;2:675 - PubMed
  10. Nature. 2002 Dec 12;420(6916):629-35 - PubMed
  11. J Biomed Opt. 2011 Sep;16(9):095001 - PubMed
  12. Neuron. 1995 Feb;14(2):263-74 - PubMed
  13. J Neurobiol. 2000 Aug;44(2):219-29 - PubMed
  14. Cold Spring Harb Perspect Biol. 2011 Mar 01;3(3):null - PubMed
  15. Nat Rev Mol Cell Biol. 2008 Sep;9(9):690-701 - PubMed
  16. PLoS Biol. 2007 Apr;5(4):e63 - PubMed
  17. Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1339-44 - PubMed
  18. J Clin Invest. 2002 Apr;109(8):993-8 - PubMed
  19. J Cell Biol. 1997 Nov 3;139(3):797-807 - PubMed
  20. Mol Biol Evol. 2007 Jan;24(1):203-16 - PubMed
  21. J Neurosci. 1997 Dec 1;17(23):9183-93 - PubMed
  22. Trends Biochem Sci. 2008 Apr;33(4):161-70 - PubMed
  23. Curr Opin Cell Biol. 2013 Feb;25(1):107-15 - PubMed
  24. Nat Rev Neurosci. 2000 Dec;1(3):173-80 - PubMed
  25. J Biol Chem. 2012 Jan 6;287(2):1600-8 - PubMed
  26. Nature. 2011 Apr 7;472(7341):100-4 - PubMed
  27. J Neurosci. 2006 May 24;26(21):5727-32 - PubMed
  28. EMBO J. 1997 Oct 15;16(20):6077-86 - PubMed
  29. Biophys J. 2008 May 1;94(9):3684-97 - PubMed
  30. Brain Res Dev Brain Res. 1991 Sep 19;62(1):81-9 - PubMed
  31. Dev Neurobiol. 2009 Oct;69(12):761-79 - PubMed
  32. Biochem Soc Trans. 1995 Aug;23(3):456-9 - PubMed
  33. Nat Rev Mol Cell Biol. 2005 Oct;6(10):789-800 - PubMed
  34. Genome Biol. 2006;7(3):211 - PubMed
  35. Development. 2014 Sep;141(17):3292-7 - PubMed
  36. J Neurosci. 1997 Aug 15;17(16):6256-63 - PubMed
  37. J Neurosci. 2008 Sep 10;28(37):9117-21 - PubMed
  38. J Neurobiol. 2004 Jan;58(1):92-102 - PubMed
  39. J Cell Biol. 2000 Apr 17;149(2):263-70 - PubMed
  40. J Biochem. 2015 Sep;158(3):245-52 - PubMed
  41. Dev Neurobiol. 2009 Sep 1;69(10):633-46 - PubMed
  42. Nat Rev Drug Discov. 2014 Aug;13(8):603-21 - PubMed
  43. Integr Biol (Camb). 2011 May;3(5):568-77 - PubMed
  44. Curr Opin Neurobiol. 2001 Feb;11(1):103-10 - PubMed
  45. J Neurochem. 2004 Jul;90(1):9-18 - PubMed
  46. Science. 1998 Jan 23;279(5350):509-14 - PubMed
  47. J Cell Sci. 2011 Mar 1;124(Pt 5):679-83 - PubMed
  48. Mol Cell Biochem. 2006 Jan;281(1-2):17-25 - PubMed
  49. Annu Rev Cell Dev Biol. 2007;23:263-92 - PubMed
  50. J Neurosci. 1993 Feb;13(2):559-67 - PubMed
  51. J Cell Sci. 2012 Jun 15;125(Pt 12):2918-29 - PubMed
  52. SIAM J Appl Math. 2011;71(4):1401-1427 - PubMed
  53. Phys Biol. 2012 Aug;9(4):046005 - PubMed
  54. J Neurobiol. 2003 Feb 5;54(2):358-69 - PubMed
  55. J Neurochem. 2014 Apr;129(2):221-34 - PubMed
  56. Eur Biophys J. 2013 Aug;42(8):591-605 - PubMed
  57. Nat Cell Biol. 2003 Jan;5(1):38-45 - PubMed
  58. J Neurosci. 1999 Mar 15;19(6):1965-75 - PubMed
  59. J Biol Chem. 2008 Jul 18;283(29):20454-72 - PubMed
  60. Annu Rev Cell Dev Biol. 2005;21:247-69 - PubMed
  61. Dev Biol. 2004 Jan 1;265(1):23-32 - PubMed
  62. Nature. 2005 Aug 18;436(7053):1020-4 - PubMed
  63. Cell Mol Neurobiol. 2011 Jul;31(5):663-8 - PubMed
  64. Brain Res Dev Brain Res. 1991 Feb 22;58(2):271-82 - PubMed
  65. Science. 2004 Sep 10;305(5690):1615-9 - PubMed
  66. J Cell Sci. 2010 Jun 1;123(Pt 11):1841-50 - PubMed
  67. Genes Dev. 2005 Jan 1;19(1):1-49 - PubMed

Publication Types