Display options
Share it on

J Anim Sci Biotechnol. 2015 Sep 14;6(1):42. doi: 10.1186/s40104-015-0041-0. eCollection 2015.

No effect of exogenous melatonin on development of cryopreserved metaphase II oocytes in mouse.

Journal of animal science and biotechnology

Wei Li, Keren Cheng, Yue Zhang, Qinggang Meng, Shi'en Zhu, Guangbin Zhou

Affiliations

  1. Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University (Chengdu Campus), Wenjiang, 611130 P.R. China ; Institute of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 P.R. China.
  2. Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah USA.
  3. Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University (Chengdu Campus), Wenjiang, 611130 P.R. China.
  4. Nanjing Biomedical Research Institute of Nanjing University, Nanjing, 210089 P.R. China.

PMID: 26380081 PMCID: PMC4568589 DOI: 10.1186/s40104-015-0041-0

Abstract

BACKGROUND: This study was conducted to investigate effect of exogenous melatonin on the development of mouse mature oocytes after cryopreservation.

RESULTS: First, mouse metaphase II (MII) oocytes were vitrified in the open-pulled straws (OPS). After warming, they were cultured for 1 h in M2 medium containing melatonin at different concentrations (0, 10(-9), 10(-7), 10(-5), 10(-3) mol/L). Then the oocytes were used to detect reactive oxygen species (ROS) and glutathione (GSH) levels (fluorescence microscopy), and the developmental potential after parthenogenetic activation. The experimental results showed that the ROS level and cleavage rate in 10(-3) mol/L melatonin group was significantly lower than that in melatonin-free group (control). The GSH levels and blastocyst rates in all melatonin-treated groups were similar to that in control. Based on the above results, we detected the expression of gene Hsp90aa1, Hsf1, Hspa1b, Nrf2 and Bcl-x1 with qRT-PCR in oocytes treated with 10(-7), or 10(-3) mol/L melatonin and untreated control. After warming and culture for 1 h, the oocytes showed higher Hsp90aa1 expression in 10(-7) mol/L melatonin-treated group than in the control (P < 0.05); the Hsf1, Hsp90aa1 and Bcl-x1 expression were significantly decreased in 10(-3) mol/L melatonin-treated group when compared to the control. Based on the above results and previous research, we detected the development of vitrified-warmed oocytes treated with either 10(-7) or 0 mol/L melatonin by in vitro fertilization. No difference was observed between them.

CONCLUSIONS: Our results indicate that the supplementation of melatonin (10(-9) to 10(-3) mol/L) in culture medium and incubation for 1 h did not improve the subsequent developmental potential of vitrified-warmed mouse MII oocytes, even if there were alteration in gene expression.

Keywords: Gene expression; Melationin; Mouse oocyte; Parthenogenetic activation; vitrificantion

References

  1. J Pineal Res. 2013 Nov;55(4):325-56 - PubMed
  2. J Pineal Res. 2014 Apr;56(3):333-42 - PubMed
  3. Zygote. 2012 May;20(2):199-207 - PubMed
  4. PLoS One. 2011 Feb 15;6(2):e17109 - PubMed
  5. Mol Reprod Dev. 2008 Mar;75(3):538-46 - PubMed
  6. Reprod Biol Endocrinol. 2005 Jul 14;3:28 - PubMed
  7. Fertil Steril. 1985 Oct;44(4):493-8 - PubMed
  8. Vet Res Commun. 2002 Feb;26(2):151-8 - PubMed
  9. J Pineal Res. 2006 Mar;40(2):101-9 - PubMed
  10. Endocrinology. 2011 Jul;152(7):2806-15 - PubMed
  11. Methods. 2001 Dec;25(4):402-8 - PubMed
  12. Mol Reprod Dev. 1995 Jun;41(2):232-8 - PubMed
  13. Cryobiology. 2007 Oct;55(2):115-26 - PubMed
  14. Mol Reprod Dev. 2014 Jun;81(6):497-513 - PubMed
  15. Reprod Domest Anim. 2009 Feb;44(1):12-6 - PubMed
  16. J Pineal Res. 2009 Jan;46(1):22-8 - PubMed
  17. J Pineal Res. 2009 May;46(4):383-91 - PubMed
  18. News Physiol Sci. 2000 Oct;15:246-250 - PubMed
  19. Free Radic Biol Med. 2008 Apr 1;44(7):1295-304 - PubMed
  20. Nature. 2000 Oct 12;407(6805):693-4 - PubMed
  21. Theriogenology. 2013 Jul 15;80(2):161-8 - PubMed
  22. J Pineal Res. 2000 Jan;28(1):48-51 - PubMed
  23. Gene. 2012 Jul 15;503(1):1-11 - PubMed
  24. J Biomed Sci. 2000 Nov-Dec;7(6):444-58 - PubMed
  25. Theriogenology. 2006 Jan 7;65(1):236-44 - PubMed
  26. J Pineal Res. 2012 Sep;53(2):122-8 - PubMed
  27. Reprod Biol. 2005 Mar;5(1):5-17 - PubMed
  28. Fertil Steril. 2011 Dec;96(6):1357-61 - PubMed
  29. J Biol Chem. 2003 Nov 28;278(48):48021-9 - PubMed
  30. Biochim Biophys Acta. 2012 Mar;1823(3):656-67 - PubMed
  31. J Pineal Res. 2009 Nov;47(4):318-23 - PubMed
  32. J Biol Chem. 2009 Apr 3;284(14):9521-8 - PubMed
  33. J Pineal Res. 2013 Apr;54(3):245-57 - PubMed
  34. Trends Pharmacol Sci. 2015 Jan;36(1):6-14 - PubMed
  35. Fertil Steril. 2009 Jul;92(1):328-43 - PubMed
  36. Theriogenology. 2011 Sep 15;76(5):785-93 - PubMed
  37. Fertil Steril. 2010 Feb;93(3):959-66 - PubMed
  38. Mol Reprod Dev. 2009 Feb;76(2):122-31 - PubMed
  39. Theriogenology. 2012 Jan 1;77(1):21-7 - PubMed
  40. J Pineal Res. 2013 Oct;55(3):267-74 - PubMed
  41. Endocrine. 2005 Jul;27(2):119-30 - PubMed
  42. Mol Reprod Dev. 1998 Sep;51(1):53-8 - PubMed
  43. J Pineal Res. 2011 Aug;51(1):1-16 - PubMed
  44. Anim Reprod Sci. 2014 Mar;145(3-4):150-60 - PubMed
  45. J Genet Genomics. 2007 Mar;34(3):214-22 - PubMed
  46. J Reprod Fertil Suppl. 1971 Jun;14:7-21 - PubMed
  47. Free Radic Biol Med. 2007 Apr 15;42(8):1201-10 - PubMed
  48. J Pineal Res. 2007 Oct;43(3):283-8 - PubMed
  49. Cell Stress Chaperones. 2011 May;16(3):275-85 - PubMed
  50. Reprod Biol Endocrinol. 2012 Dec 03;10:103 - PubMed
  51. Biol Reprod. 2011 Nov;85(5):884-94 - PubMed
  52. J Pineal Res. 2005 Jan;38(1):1-9 - PubMed
  53. Reprod Biomed Online. 2013 Jan;26(1):22-9 - PubMed

Publication Types