Display options
Share it on

Ecol Evol. 2015 Sep;5(17):3783-99. doi: 10.1002/ece3.1633. Epub 2015 Aug 20.

Maintenance of brucellosis in Yellowstone bison: linking seasonal food resources, host-pathogen interaction, and life-history trade-offs.

Ecology and evolution

John J Treanor, Chris Geremia, Michael A Ballou, Duane H Keisler, Patrick J White, John J Cox, Philip H Crowley

Affiliations

  1. National Park Service, Yellowstone National Park P.O. 168, Mammoth Hot Springs, Wyoming, 82190.
  2. Department of Animal and Food Sciences, Texas Tech University Lubbock, Texas, 79409.
  3. Division of Animal Sciences, University of Missouri Columbia, Missouri, 65211.
  4. Department of Forestry, University of Kentucky Lexington, Kentucky, 40546.
  5. Department of Biology, University of Kentucky Lexington, Kentucky, 40506.

PMID: 26380705 PMCID: PMC4567880 DOI: 10.1002/ece3.1633

Abstract

The seasonal availability of food resources is an important factor shaping the life-history strategies of organisms. During times of nutritional restriction, physiological trade-offs can induce periods of immune suppression, thereby increasing susceptibility to infectious disease. Our goal was to provide a conceptual framework describing how the endemic level bovine brucellosis (Brucella abortus) may be maintained in Yellowstone bison based on the seasonality of food resources and the life-history strategies of the host and pathogen. Our analysis was based on active B. abortus infection (measured via bacterial culture), nutritional indicators (measured as metabolites and hormones in plasma), and carcass measurements of 402 slaughtered bison. Data from Yellowstone bison were used to investigate (1) whether seasonal changes in diet quality affect nutritional condition and coincide with the reproductive needs of female bison; (2) whether active B. abortus infection and infection intensities vary with host nutrition and nutritional condition; and (3) the evidence for seasonal changes in immune responses, which may offer protection against B. abortus, in relation to nutritional condition. Female bison experienced a decline in nutritional condition during winter as reproductive demands of late gestation increased while forage quality and availability declined. Active B. abortus infection was negatively associated with bison age and nutritional condition, with the intensity of infection negatively associated with indicators of nutrition (e.g., dietary protein and energy) and body weight. Data suggest that protective cell-mediated immune responses may be reduced during the B. abortus transmission period, which coincides with nutritional insufficiencies and elevated reproductive demands during spring. Our results illustrate how seasonal food restriction can drive physiological trade-offs that suppress immune function and create infection and transmission opportunities for pathogens.

Keywords: Age; Brucella abortus; condition; diet; energy; immune; interferon-γ; leptin; nutrition; protein

References

  1. J Wildl Dis. 2011 Jul;47(3):501-10 - PubMed
  2. J Dairy Sci. 2008 Aug;91(8):2996-3009 - PubMed
  3. Arthritis Res Ther. 2006;8(5):217 - PubMed
  4. J Endocrinol. 2000 May;165(2):519-26 - PubMed
  5. Infect Immun. 2008 May;76(5):1897-907 - PubMed
  6. Comp Biochem Physiol A Mol Integr Physiol. 2013 Jan;164(1):101-10 - PubMed
  7. Trends Microbiol. 2003 Feb;11(2):80-6 - PubMed
  8. Ecology. 2010 Jul;91(7):2034-43 - PubMed
  9. J Wildl Dis. 2002 Apr;38(2):344-51 - PubMed
  10. Domest Anim Endocrinol. 2005 Jul;29(1):3-22 - PubMed
  11. J Immunol. 1982 Jan;128(1):337-42 - PubMed
  12. Integr Comp Biol. 2011 Oct;51(4):505-13 - PubMed
  13. Nutr Rev. 2002 Oct;60(10 Pt 2):S35-8; discussion S68-84, 85-7 - PubMed
  14. J Dairy Sci. 2008 Sep;91(9):3478-87 - PubMed
  15. Trends Parasitol. 2002 Nov;18(11):497-504 - PubMed
  16. Int J Parasitol. 2004 Mar 29;34(4):535-42 - PubMed
  17. Mediators Inflamm. 2010;2010:568343 - PubMed
  18. Proc Biol Sci. 2003 May 7;270(1518):905-11 - PubMed
  19. Comp Biochem Physiol B Biochem Mol Biol. 2008 Apr;149(4):613-21 - PubMed
  20. Comp Immunol Microbiol Infect Dis. 1993 Apr;16(2):95-101 - PubMed
  21. Integr Comp Biol. 2009 Sep;49(3):246-53 - PubMed
  22. Vet Parasitol. 2006 Oct 10;141(1-2):122-31 - PubMed
  23. J Wildl Dis. 2001 Jan;37(1):101-9 - PubMed
  24. Vet Pathol. 2014 Nov;51(6):1076-89 - PubMed
  25. Vet Microbiol. 2002 Dec 20;90(1-4):395-415 - PubMed
  26. Proc Nutr Soc. 2001 Nov;60(4):515-25 - PubMed
  27. PLoS One. 2011 Feb 14;6(2):e16848 - PubMed
  28. Philos Trans R Soc Lond B Biol Sci. 2008 Jan 27;363(1490):321-39 - PubMed
  29. Rev Sci Tech. 2013 Apr;32(1):137-47 - PubMed
  30. Integr Comp Biol. 2009 Sep;49(3):202-14 - PubMed
  31. Vet Immunol Immunopathol. 2009 Aug 15;130(3-4):141-62 - PubMed
  32. Domest Anim Endocrinol. 2005 Aug;29(2):294-304 - PubMed
  33. Ecol Lett. 2006 Apr;9(4):467-84 - PubMed
  34. Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16514-9 - PubMed
  35. Vet J. 2010 May;184(2):146-55 - PubMed
  36. Integr Comp Biol. 2010 Sep;50(3):346-57 - PubMed
  37. Trends Ecol Evol. 2010 Jan;25(1):21-7 - PubMed
  38. J Anim Sci. 1996 Jan;74(1):57-69 - PubMed
  39. Nutr Res Rev. 2000 Jun;13(1):3-29 - PubMed
  40. Res Vet Sci. 2007 Aug;83(1):47-52 - PubMed

Publication Types