Display options
Share it on

Physiol Plant. 2016 Feb;156(2):127-138. doi: 10.1111/ppl.12397. Epub 2015 Nov 26.

High-throughput microanalysis of large lignocellulosic sample sets by pyrolysis-gas chromatography/mass spectrometry.

Physiologia plantarum

Lorenz Gerber, David Öhman, Manoj Kumar, Philippe Ranocha, Deborah Goffner, Björn Sundberg

Affiliations

  1. Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.
  2. Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Castanet-Tolosan, France.
  3. Laboratoire de Recherche en Sciences Végétales, CNRS, Castanet-Tolosan, France.

PMID: 26477543 PMCID: PMC4738464 DOI: 10.1111/ppl.12397

Abstract

High-throughput analytical techniques to assess the chemistry of lignocellulosic plant material are crucial to plant cell-wall research. We have established an analytical platform for this purpose and demonstrated its usefulness with two applications. The system is based on analytical pyrolysis, coupled to gas chromatography/mass spectrometry - a technique particularly suited for analysis of lignocellulose. Automated multivariate-based data-processing methods are used to obtain results within a few hours after analysis, with an experimental batch of 500 analyzed samples. The usefulness of multivariate sample discrimination methods and hierarchical clustering of samples is demonstrated. We have analyzed an Arabidopsis mutant collection consisting of 300 samples representing 31 genotypes. The mutant collection is presented through cluster analysis, based on chemotypic difference, with respect to wild type. Further, we have analyzed 500 thin sections from five biological replicate trees to create a spatial highly resolved profile of the proportions of syringyl-, guaiacyl- and p-hydroxyphenyl lignin across phloem, developing and mature wood in aspen. The combination of biologically easy to interpret information, the low demand of sample amount and the flexibility in sample types amenable to analysis makes this technique a valuable extension to the range of established high-throughput biomaterial analytical platforms.

© 2015 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.

References

  1. Anal Biochem. 2002 Jan 1;300(1):53-68 - PubMed
  2. Methods Mol Biol. 2011;715:43-54 - PubMed
  3. Org Biomol Chem. 2010 Feb 7;8(3):576-91 - PubMed
  4. Anal Chem. 2012 Oct 16;84(20):8675-81 - PubMed
  5. Front Plant Sci. 2012 Mar 12;3:45 - PubMed
  6. Phytochemistry. 2001 Jul;57(6):859-73 - PubMed
  7. Plant Physiol. 1998 May;117(1):113-21 - PubMed
  8. Plant Physiol. 2010 Jun;153(2):542-54 - PubMed
  9. Plant J. 2007 Jun;50(6):1118-28 - PubMed
  10. Plant Cell. 2003 Sep;15(9):2020-31 - PubMed
  11. Plant Physiol. 2010 Jun;153(2):514-25 - PubMed
  12. Plant Physiol. 2007 Dec;145(4):1444-59 - PubMed
  13. Plant J. 2011 Jun;66(5):903-14 - PubMed
  14. Nucleic Acids Res. 2012 Jan;40(Database issue):D1211-5 - PubMed
  15. Mol Plant. 2009 Sep;2(5):933-42 - PubMed
  16. Genetics. 2001 Dec;159(4):1741-9 - PubMed
  17. Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14732-7 - PubMed
  18. Plant Cell. 2005 Aug;17(8):2281-95 - PubMed
  19. Plant Cell. 2005 Dec;17(12):3390-408 - PubMed
  20. J Agric Food Chem. 2012 Jun 13;60(23):5922-35 - PubMed
  21. Plant J. 2009 May;58(4):706-14 - PubMed
  22. Methods Mol Biol. 2014;1062:317-52 - PubMed
  23. Planta. 2008 Apr;227(5):943-56 - PubMed
  24. Plant Physiol. 2005 Dec;139(4):1821-39 - PubMed
  25. C R Biol. 2004 Sep-Oct;327(9-10):903-10 - PubMed
  26. Nat Commun. 2013;4:2625 - PubMed
  27. Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11417-22 - PubMed
  28. Plant J. 2010 Aug;63(3):469-83 - PubMed
  29. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9282-6 - PubMed
  30. Plant J. 2003 Aug;35(3):393-404 - PubMed
  31. Nat Protoc. 2012 Sep;7(9):1579-89 - PubMed
  32. Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4501-6 - PubMed

Publication Types