Display options
Share it on

Nat Commun. 2015 Oct 19;6:8610. doi: 10.1038/ncomms9610.

Spectromicroscopic insights for rational design of redox-based memristive devices.

Nature communications

Christoph Baeumer, Christoph Schmitz, Amr H H Ramadan, Hongchu Du, Katharina Skaja, Vitaliy Feyer, Philipp Müller, Benedikt Arndt, Chun-Lin Jia, Joachim Mayer, Roger A De Souza, Claus Michael Schneider, Rainer Waser, Regina Dittmann

Affiliations

  1. Peter Gruenberg Institute, Forschungszentrum Juelich GmbH and JARA-FIT, 52425 Juelich, Germany.
  2. Institute of Physical Chemistry, RWTH Aachen University and JARA-FIT, 52056 Aachen, Germany.
  3. Ernst Ruska-Centre, Forschungszentrum Juelich GmbH and RWTH Aachen University, 52425 Juelich, Germany.
  4. Institute of Materials in Electrical Engineering and Information Technology II, RWTH Aachen University, 52056 Aachen, Germany.

PMID: 26477940 PMCID: PMC4634325 DOI: 10.1038/ncomms9610

Abstract

The demand for highly scalable, low-power devices for data storage and logic operations is strongly stimulating research into resistive switching as a novel concept for future non-volatile memory devices. To meet technological requirements, it is imperative to have a set of material design rules based on fundamental material physics, but deriving such rules is proving challenging. Here, we elucidate both switching mechanism and failure mechanism in the valence-change model material SrTiO3, and on this basis we derive a design rule for failure-resistant devices. Spectromicroscopy reveals that the resistance change during device operation and failure is indeed caused by nanoscale oxygen migration resulting in localized valence changes between Ti(4+) and Ti(3+). While fast reoxidation typically results in retention failure in SrTiO3, local phase separation within the switching filament stabilizes the retention. Mimicking this phase separation by intentionally introducing retention-stabilization layers with slow oxygen transport improves retention times considerably.

References

  1. Nat Nanotechnol. 2008 Jul;3(7):429-33 - PubMed
  2. Adv Mater. 2011 Dec 15;23(47):5633-40 - PubMed
  3. Ultramicroscopy. 2015 Apr;151:62-7 - PubMed
  4. Adv Mater. 2010 Aug 24;22(32):3573-7 - PubMed
  5. Nano Lett. 2010 Oct 13;10(10):3828-35 - PubMed
  6. Phys Chem Chem Phys. 2005 May 7;7(9):2053-60 - PubMed
  7. Nat Mater. 2010 May;9(5):403-6 - PubMed
  8. Phys Rev B Condens Matter. 1991 Sep 15;44(11):5419-5422 - PubMed
  9. J Phys Condens Matter. 2009 Aug 5;21(31):314013 - PubMed
  10. Adv Mater. 2014 Mar 5;26(9):1462-7 - PubMed
  11. Sci Rep. 2015 Jul 20;5:11829 - PubMed
  12. Nat Mater. 2007 Nov;6(11):833-40 - PubMed
  13. J Phys Chem B. 2006 Jun 22;110(24):11780-95 - PubMed
  14. Phys Chem Chem Phys. 2006 Feb 21;8(7):890-7 - PubMed
  15. Adv Mater. 2010 Nov 16;22(43):4819-22 - PubMed
  16. Nanoscale. 2014 Nov 7;6(21):12864-76 - PubMed
  17. Phys Chem Chem Phys. 2008 Apr 21;10(15):2067-72 - PubMed
  18. Nat Commun. 2013;4:1371 - PubMed

Publication Types