Display options
Share it on

Front Neurosci. 2015 Sep 23;9:326. doi: 10.3389/fnins.2015.00326. eCollection 2015.

Enhanced functional connectivity involving the ventromedial hypothalamus following methamphetamine exposure.

Frontiers in neuroscience

Damian G Zuloaga, Ovidiu D Iancu, Sydney Weber, Desiree Etzel, Tessa Marzulla, Blair Stewart, Charles N Allen, Jacob Raber

Affiliations

  1. Department of Behavioral Neuroscience, Oregon Health & Science University Portland Portland, OR, USA ; Department of Psychology, University at Albany Albany, NY, USA.
  2. Department of Behavioral Neuroscience, Oregon Health & Science University Portland Portland, OR, USA.
  3. Department of Behavioral Neuroscience, Oregon Health & Science University Portland Portland, OR, USA ; Oregon Institute of Occupational Health Sciences, Oregon Health & Science University Portland Portland, OR, USA.
  4. Department of Behavioral Neuroscience, Oregon Health & Science University Portland Portland, OR, USA ; Department of Neurology, Oregon Health & Science University Portland Portland, OR, USA ; Department of Radiation Medicine, Oregon Health & Science University Portland Portland, OR, USA ; Division of Neuroscience, ONPRC, Oregon Health & Science University Portland Portland, OR, USA.

PMID: 26441501 PMCID: PMC4585047 DOI: 10.3389/fnins.2015.00326

Abstract

Methamphetamine (MA) consumption causes disruption of many biological rhythms including the sleep-wake cycle. This circadian effect is seen shortly following MA exposure and later in life following developmental MA exposure. MA phase shifts, entrains the circadian clock and can also alter the entraining effect of light by currently unknown mechanisms. We analyzed and compared immunoreactivity of the immediate early gene c-Fos, a marker of neuronal activity, to assess neuronal activation 2 h following MA exposure in the light and dark phases. We used network analyses of correlation patterns derived from global brain immunoreactivity patterns of c-Fos, to infer functional connectivity between brain regions. There were five distinct patterns of neuronal activation. In several brain areas, neuronal activation following exposure to MA was stronger in the light than the dark phase, highlighting the importance of considering circadian periods of increased effects of MA in defining experimental conditions and understanding the mechanisms underlying detrimental effects of MA exposure to brain function. Functional connectivity between the ventromedial hypothalamus (VMH) and other brain areas, including the paraventricular nucleus of the hypothalamus and basolateral and medial amygdala, was enhanced following MA exposure, suggesting a role for the VMH in the effects of MA on the brain.

Keywords: activation; dark phase; functional connectivity; light phase; methamphetamine

References

  1. Neuroscience. 2004;124(3):637-46 - PubMed
  2. Brain Res Bull. 1993;31(3-4):293-9 - PubMed
  3. J Neurosci. 2005 Jun 22;25(25):5998-6004 - PubMed
  4. Physiol Behav. 1991 Apr;49(4):787-95 - PubMed
  5. J Neurosci. 1997 Dec 1;17(23):9375-83 - PubMed
  6. Science. 2015 Jun 12;348(6240):1241-4 - PubMed
  7. Endocrinology. 1981 Apr;108(4):1420-4 - PubMed
  8. Endocr Rev. 1986 Nov;7(4):351-78 - PubMed
  9. Ann N Y Acad Sci. 2003 Nov;1003:358-63 - PubMed
  10. Am Econ Rev. 2009 Mar 1;99(1):324-349 - PubMed
  11. J Neurochem. 2008 Nov;107(4):976-86 - PubMed
  12. Addict Behav. 2006 Aug;31(8):1469-76 - PubMed
  13. Neurotoxicol Teratol. 2000 Sep-Oct;22(5):751-9 - PubMed
  14. Behav Pharmacol. 2009 Mar;20(2):174-83 - PubMed
  15. Hawaii Med J. 1997 Feb;56(2):34-6, 44 - PubMed
  16. PLoS One. 2012;7(7):e40709 - PubMed
  17. Endocrinology. 1996 Feb;137(2):455-63 - PubMed
  18. PLoS Comput Biol. 2011 Jan 06;7(1):e1001049 - PubMed
  19. J Neurosci. 2000 Mar 1;20(5):2064-71 - PubMed
  20. J Neurosci. 1996 Dec 1;16(23):7725-32 - PubMed
  21. Psychiatry Res. 2004 Dec 15;132(2):95-106 - PubMed
  22. Physiol Behav. 1994 Nov;56(5):891-9 - PubMed
  23. Brain Res. 1983 Nov 21;279(1-2):53-63 - PubMed
  24. J Neurochem. 2014 May;129(3):495-508 - PubMed
  25. Bioinformation. 2014 Apr 23;10(4):233-4 - PubMed
  26. Neuropsychopharmacology. 2010 Jan;35(1):217-38 - PubMed
  27. Synapse. 1997 Oct;27(2):153-60 - PubMed
  28. J Neurosci. 1996 Sep 1;16(17):5555-65 - PubMed
  29. Neuroimage. 2009 Nov 1;48(2):391-7 - PubMed
  30. Psychoneuroendocrinology. 1995;20(5):525-41 - PubMed
  31. J Neurosci. 2011 Mar 2;31(9):3261-70 - PubMed
  32. J Neural Transm (Vienna). 1996;103(6):671-80 - PubMed
  33. Sleep Med Rev. 2012 Feb;16(1):67-81 - PubMed
  34. Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1223-8 - PubMed
  35. Behav Brain Res. 2012 Apr 21;230(1):229-36 - PubMed
  36. BMC Biol. 2007 Apr 26;5:16 - PubMed
  37. Behav Brain Res. 2013 Nov 1;256:197-204 - PubMed
  38. Pharmacol Biochem Behav. 1985 Dec;23(6):917-20 - PubMed
  39. J Biol Rhythms. 2006 Jun;21(3):185-94 - PubMed
  40. Brain Res. 1987 Mar 31;407(2):327-31 - PubMed
  41. Prog Neuropsychopharmacol Biol Psychiatry. 1994 Mar;18(2):397-407 - PubMed
  42. Psychiatry Res. 2002 Jun 15;114(2):65-79 - PubMed
  43. Eur J Neurosci. 2001 Oct;14(7):1177-80 - PubMed
  44. Brain Res Brain Res Rev. 1998 May;26(2-3):320-6 - PubMed
  45. Physiol Behav. 1986;38(5):687-95 - PubMed

Publication Types

Grant support