Display options
Share it on

Sci Data. 2015 Sep 29;2:150053. doi: 10.1038/sdata.2015.53. eCollection 2015.

A database to enable discovery and design of piezoelectric materials.

Scientific data

Maarten de Jong, Wei Chen, Henry Geerlings, Mark Asta, Kristin Aslaug Persson

Affiliations

  1. Department of Materials Science and Engineering, University of California , Berkeley, California 94720, USA.
  2. Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, USA ; Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology , Berkeley, Chicago IL 60616, USA.
  3. Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, USA.

PMID: 26451252 PMCID: PMC4587372 DOI: 10.1038/sdata.2015.53

Abstract

Piezoelectric materials are used in numerous applications requiring a coupling between electrical fields and mechanical strain. Despite the technological importance of this class of materials, for only a small fraction of all inorganic compounds which display compatible crystallographic symmetry, has piezoelectricity been characterized experimentally or computationally. In this work we employ first-principles calculations based on density functional perturbation theory to compute the piezoelectric tensors for nearly a thousand compounds, thereby increasing the available data for this property by more than an order of magnitude. The results are compared to select experimental data to establish the accuracy of the calculated properties. The details of the calculations are also presented, along with a description of the format of the database developed to make these computational results publicly available. In addition, the ways in which the database can be accessed and applied in materials development efforts are described.

References

  1. Sci Data. 2015 Mar 17;2:150009 - PubMed
  2. Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979 - PubMed
  3. Phys Rev A. 1995 Aug;52(2):1096-1114 - PubMed
  4. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 - PubMed
  5. Acta Crystallogr B. 2002 Jun;58(Pt 3 Pt 1):364-9 - PubMed
  6. J Phys Condens Matter. 2012 Apr 25;24(16):162202 - PubMed
  7. Phys Rev B Condens Matter. 1993 Jan 15;47(3):1651-1654 - PubMed
  8. Phys Rev B Condens Matter. 1991 Jan 15;43(3):1993-2006 - PubMed
  9. Phys Rev Lett. 1987 May 4;58(18):1861-1864 - PubMed
  10. Nat Mater. 2013 Mar;12(3):191-201 - PubMed
  11. Phys Rev Lett. 2002 Sep 9;89(11):117602 - PubMed
  12. Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561 - PubMed
  13. Phys Rev Lett. 2015 Aug 7;115(6):065501 - PubMed
  14. Nature. 2004 Nov 4;432(7013):24-5 - PubMed
  15. Science. 2009 Nov 13;326(5955):977-80 - PubMed
  16. Nature. 2008 Jan 31;451(7178):545-8 - PubMed
  17. IEEE Trans Ultrason Ferroelectr Freq Control. 2005 May;52(5):746-75 - PubMed
  18. J Phys Condens Matter. 2006 Aug 16;18(32):7659-68 - PubMed
  19. ACS Comb Sci. 2011 Jul 11;13(4):382-90 - PubMed
  20. Phys Rev Lett. 2005 Jul 15;95(3):037601 - PubMed
  21. Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 - PubMed
  22. Phys Rev B Condens Matter. 1991 Jul 15;44(3):943-954 - PubMed

Publication Types