Display options
Share it on

Front Microbiol. 2015 Sep 23;6:966. doi: 10.3389/fmicb.2015.00966. eCollection 2015.

Metagenomic analysis reveals that modern microbialites and polar microbial mats have similar taxonomic and functional potential.

Frontiers in microbiology

Richard Allen White, Ian M Power, Gregory M Dipple, Gordon Southam, Curtis A Suttle

Affiliations

  1. Department of Microbiology and Immunology, University of British Columbia Vancouver, BC, Canada.
  2. Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada.
  3. School of Earth Sciences, University of Queensland Brisbane, QLD, Australia.
  4. Department of Microbiology and Immunology, University of British Columbia Vancouver, BC, Canada ; Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada ; Department of Botany, University of British Columbia Vancouver, BC, Canada ; Canadian Institute for Advanced Research Toronto, ON, Canada.

PMID: 26441900 PMCID: PMC4585152 DOI: 10.3389/fmicb.2015.00966

Abstract

Within the subarctic climate of Clinton Creek, Yukon, Canada, lies an abandoned and flooded open-pit asbestos mine that harbors rapidly growing microbialites. To understand their formation we completed a metagenomic community profile of the microbialites and their surrounding sediments. Assembled metagenomic data revealed that bacteria within the phylum Proteobacteria numerically dominated this system, although the relative abundances of taxa within the phylum varied among environments. Bacteria belonging to Alphaproteobacteria and Gammaproteobacteria were dominant in the microbialites and sediments, respectively. The microbialites were also home to many other groups associated with microbialite formation including filamentous cyanobacteria and dissimilatory sulfate-reducing Deltaproteobacteria, consistent with the idea of a shared global microbialite microbiome. Other members were present that are typically not associated with microbialites including Gemmatimonadetes and iron-oxidizing Betaproteobacteria, which participate in carbon metabolism and iron cycling. Compared to the sediments, the microbialite microbiome has significantly more genes associated with photosynthetic processes (e.g., photosystem II reaction centers, carotenoid, and chlorophyll biosynthesis) and carbon fixation (e.g., CO dehydrogenase). The Clinton Creek microbialite communities had strikingly similar functional potentials to non-lithifying microbial mats from the Canadian High Arctic and Antarctica, but are functionally distinct, from non-lithifying mats or biofilms from Yellowstone. Clinton Creek microbialites also share metabolic genes (R (2) < 0.750) with freshwater microbial mats from Cuatro CiƩnegas, Mexico, but are more similar to polar Arctic mats (R (2) > 0.900). These metagenomic profiles from an anthropogenic microbialite-forming ecosystem provide context to microbialite formation on a human-relevant timescale.

Keywords: Gemmatimonadetes; carbon sequestration; cyanobacteria; metagenomic assembly; microbialites; non-lithifying microbial mats

References

  1. PLoS One. 2012;7(5):e38229 - PubMed
  2. Environ Microbiol. 2009 Jan;11(1):16-34 - PubMed
  3. Genome Biol. 2012 Dec 22;13(12):R122 - PubMed
  4. BMC Bioinformatics. 2013 Jun 21;14:202 - PubMed
  5. Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):869-85 - PubMed
  6. Nucleic Acids Res. 2010 Nov;38(20):e191 - PubMed
  7. Geobiology. 2012 Nov;10(6):518-30 - PubMed
  8. Geobiology. 2009 Jan;7(1):82-96 - PubMed
  9. Environ Microbiol. 2004 Oct;6(10):1096-101 - PubMed
  10. Geobiology. 2009 Dec;7(5):544-55 - PubMed
  11. Photosynth Res. 2013 Nov;118(1-2):125-40 - PubMed
  12. Nature. 2000 Oct 5;407(6804):626-9 - PubMed
  13. Syst Appl Microbiol. 2010 Jun;33(4):209-21 - PubMed
  14. Appl Environ Microbiol. 2012 Jan;78(2):549-59 - PubMed
  15. Appl Environ Microbiol. 2008 Dec;74(23):7410-21 - PubMed
  16. Genome Announc. 2013 Aug 08;1(4):null - PubMed
  17. Annu Rev Earth Planet Sci. 1999;27:313-58 - PubMed
  18. Nature. 2000 Aug 31;406(6799):989-92 - PubMed
  19. Environ Sci Technol. 2011 Oct 15;45(20):9061-8 - PubMed
  20. FEMS Microbiol Ecol. 2012 Dec;82(3):724-35 - PubMed
  21. Environ Sci Technol. 2014 Aug 19;48(16):9142-51 - PubMed
  22. BMC Bioinformatics. 2008 Sep 19;9:386 - PubMed
  23. Environ Microbiol. 2008 Apr;10(4):950-66 - PubMed
  24. BMC Genomics. 2009 Mar 19;10:116 - PubMed
  25. Bioinformatics. 2010 Mar 15;26(6):715-21 - PubMed
  26. Science. 2001 Jun 1;292(5522):1701-4 - PubMed
  27. Geobiology. 2014 May;12(3):250-64 - PubMed
  28. Extremophiles. 2005 Aug;9(4):263-74 - PubMed
  29. Appl Environ Microbiol. 2005 Aug;71(8):4822-32 - PubMed
  30. Bioinformation. 2012;8(3):167-9 - PubMed
  31. Geobiology. 2012 Sep;10(5):384-401 - PubMed
  32. J Comput Biol. 2010 Nov;17(11):1519-33 - PubMed
  33. PLoS One. 2011;6(12):e28767 - PubMed
  34. Appl Environ Microbiol. 2006 Feb;72(2):1487-95 - PubMed
  35. Trends Microbiol. 2005 Sep;13(9):429-38 - PubMed
  36. Genome Announc. 2013 Aug 08;1(4):null - PubMed
  37. ISME J. 2009 Apr;3(4):383-96 - PubMed
  38. Appl Environ Microbiol. 2012 Sep;78(17):6225-35 - PubMed
  39. PLoS One. 2011 Mar 10;6(3):e17677 - PubMed
  40. Geobiology. 2011 Mar;9(2):180-95 - PubMed
  41. Science. 2000 Oct 13;290(5490):291-6 - PubMed
  42. Genome Announc. 2013 Jun 27;1(4):null - PubMed
  43. Genome Res. 2011 Mar;21(3):487-93 - PubMed
  44. Geobiology. 2007 Jun;5(2):119-126 - PubMed
  45. Bioinformatics. 2006 Jun 15;22(12):1540-2 - PubMed

Publication Types