Display options
Share it on

Springerplus. 2015 Oct 15;4:611. doi: 10.1186/s40064-015-1406-8. eCollection 2015.

Understanding drugs in breast cancer through drug sensitivity screening.

SpringerPlus

Katharina Uhr, Wendy J C Prager-van der Smissen, Anouk A J Heine, Bahar Ozturk, Marcel Smid, Hinrich W H Göhlmann, Agnes Jager, John A Foekens, John W M Martens

Affiliations

  1. Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Postbus 2040, 's-Gravendijkwal 230, 3000 CA Rotterdam, The Netherlands.
  2. Division of Janssen Pharmaceutica, Johnson & Johnson Pharmaceutical Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium.
  3. Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Postbus 2040, 's-Gravendijkwal 230, 3000 CA Rotterdam, The Netherlands.

PMID: 26543746 PMCID: PMC4628005 DOI: 10.1186/s40064-015-1406-8

Abstract

With substantial numbers of breast tumors showing or acquiring treatment resistance, it is of utmost importance to develop new agents for the treatment of the disease, to know their effectiveness against breast cancer and to understand their relationships with other drugs to best assign the right drug to the right patient. To achieve this goal drug screenings on breast cancer cell lines are a promising approach. In this study a large-scale drug screening of 37 compounds was performed on a panel of 42 breast cancer cell lines representing the main breast cancer subtypes. Clustering, correlation and pathway analyses were used for data analysis. We found that compounds with a related mechanism of action had correlated IC50 values and thus grouped together when the cell lines were hierarchically clustered based on IC50 values. In total we found six clusters of drugs of which five consisted of drugs with related mode of action and one cluster with two drugs not previously connected. In total, 25 correlated and four anti-correlated drug sensitivities were revealed of which only one drug, Sirolimus, showed significantly lower IC50 values in the luminal/ERBB2 breast cancer subtype. We found expected interactions but also discovered new relationships between drugs which might have implications for cancer treatment regimens.

Keywords: Breast cancer; Cell line; Drugs; Pathway; Screening; Subtype

References

  1. Methods Mol Med. 2005;110:39-48 - PubMed
  2. N Engl J Med. 2009 Oct 22;361(17):1662-70 - PubMed
  3. Discov Med. 2010 Nov;10(54):462-70 - PubMed
  4. Cancer Res. 2013 May 15;73(10):3087-96 - PubMed
  5. Breast Cancer Res Treat. 2010 May;121(1):53-64 - PubMed
  6. Biomark Cancer. 2013 Oct 29;5:61-70 - PubMed
  7. Adv Exp Med Biol. 2007;608:1-22 - PubMed
  8. Mol Pharmacol. 1994 Apr;45(4):649-56 - PubMed
  9. J Clin Oncol. 2009 Mar 10;27(8):1160-7 - PubMed
  10. Nature. 2002 Jan 31;415(6871):530-6 - PubMed
  11. Cancer Lett. 2013 Oct 1;339(1):1-7 - PubMed
  12. J Biol Chem. 1982 Feb 25;257(4):2041-8 - PubMed
  13. Bioinformatics. 2004 Nov 22;20(17):3246-8 - PubMed
  14. J Pharmacol Exp Ther. 2013 Sep;346(3):381-92 - PubMed
  15. Clin Cancer Res. 1999 Sep;5(9):2638-45 - PubMed
  16. Breast Cancer Res Treat. 2014 Jan;143(1):57-68 - PubMed
  17. Clin Colorectal Cancer. 2003 Feb;2(4):246-51 - PubMed
  18. J Natl Cancer Inst. 2009 Jan 7;101(1):61-6 - PubMed
  19. Toxicol Lett. 2014 Feb 10;225(1):43-7 - PubMed
  20. Bioinformatics. 2004 Jan 1;20(1):93-9 - PubMed
  21. Cancer Res. 2008 May 1;68(9):3193-203 - PubMed
  22. Eur J Cancer. 2006 Jun;42(9):1219-24 - PubMed
  23. Oncologist. 2007 Mar;12 (3):281-90 - PubMed
  24. IUBMB Life. 2007 Nov;59(11):696-9 - PubMed
  25. Clin Cancer Res. 2008 Oct 1;14(19):6146-53 - PubMed
  26. Drugs Today (Barc). 2006 Oct;42(10 ):657-70 - PubMed
  27. Annu Rev Pharmacol Toxicol. 2009;49:223-41 - PubMed
  28. J Natl Cancer Inst. 2005 Oct 19;97(20):1498-506 - PubMed
  29. PLoS One. 2012;7(10):e48745 - PubMed
  30. Breast Cancer. 2004;11(1):82-5 - PubMed
  31. N Engl J Med. 2005 Oct 27;353(17 ):1784-92 - PubMed
  32. J Clin Oncol. 2001 Mar 15;19(6):1865-78 - PubMed
  33. Lancet. 2005 Feb 19-25;365(9460):671-9 - PubMed
  34. J Clin Oncol. 2005 Feb 1;23(4):732-40 - PubMed
  35. Curr Opin Oncol. 2012 Nov;24(6):597-604 - PubMed
  36. Breast Cancer Res Treat. 2010 Jul;122(1):125-33 - PubMed
  37. Cancer Treat Rev. 2007 Dec;33(8):688-703 - PubMed
  38. Cancer Res. 1976 Aug;36(8):2891-5 - PubMed
  39. Nature. 2012 Oct 4;490(7418):61-70 - PubMed
  40. Biochemistry. 2012 Mar 27;51(12):2390-406 - PubMed
  41. PLoS One. 2013 Sep 06;8(9):e74741 - PubMed
  42. Oncogene. 2002 Aug 12;21(35):5483-95 - PubMed
  43. J Transl Med. 2012 Aug 16;10 :165 - PubMed
  44. J Biomed Sci. 2009 Mar 11;16:31 - PubMed
  45. Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3983-8 - PubMed
  46. Cancer Treat Rev. 2013 Nov;39(7):793-801 - PubMed
  47. Breast. 2011 Oct;20 Suppl 3:S12-9 - PubMed
  48. Ann Pharmacother. 2006 Feb;40(2):261-9 - PubMed
  49. Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10869-74 - PubMed
  50. Nucleic Acids Res. 1999 Jan 1;27(1):29-34 - PubMed
  51. Nat Rev Cancer. 2003 May;3(5):330-8 - PubMed
  52. Nat Med. 2011 Mar;17(3):244 - PubMed
  53. Breast Cancer Res. 2013 Apr 19;15(2):R33 - PubMed
  54. Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2724-9 - PubMed
  55. Biochemistry. 1990 Mar 13;29(10):2538-49 - PubMed

Publication Types