Display options
Share it on

Front Cell Neurosci. 2015 Sep 29;9:379. doi: 10.3389/fncel.2015.00379. eCollection 2015.

Pharmacological activation of CB2 receptors counteracts the deleterious effect of ethanol on cell proliferation in the main neurogenic zones of the adult rat brain.

Frontiers in cellular neuroscience

Patricia Rivera, Eduardo Blanco, Laura Bindila, Francisco Alen, Antonio Vargas, Leticia Rubio, Francisco J Pavón, Antonia Serrano, Beat Lutz, Fernando Rodríguez de Fonseca, Juan Suárez

Affiliations

  1. UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain.
  2. UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain ; Departament de Pedagogia i Psicologia, Facultat de Ciències de l'Educació, Universitat de Lleida Lleida, Spain.
  3. Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University of Mainz Mainz, Germany.
  4. Departamento de Anatomía y Medicina Legal, Universidad de Málaga Málaga, Spain.

PMID: 26483633 PMCID: PMC4587308 DOI: 10.3389/fncel.2015.00379

Abstract

Chronic alcohol exposure reduces endocannabinoid activity and disrupts adult neurogenesis in rodents, which results in structural and functional alterations. Cannabinoid receptor agonists promote adult neural progenitor cell (NPC) proliferation. We evaluated the protective effects of the selective CB1 receptor agonist ACEA, the selective CB2 receptor agonist JWH133 and the fatty-acid amide-hydrolase (FAAH) inhibitor URB597, which enhances endocannabinoid receptor activity, on NPC proliferation in rats with forced consumption of ethanol (10%) or sucrose liquid diets for 2 weeks. We performed immunohistochemical and stereological analyses of cells expressing the mitotic phosphorylation of histone-3 (phospho-H3+) and the replicating cell DNA marker 5-bromo-2'-deoxyuridine (BrdU+) in the main neurogenic zones of adult brain: subgranular zone of dentate gyrus (SGZ), subventricular zone of lateral ventricles (SVZ) and hypothalamus. Animals were allowed ad libitum ethanol intake (7.3 ± 1.1 g/kg/day) after a controlled isocaloric pair-feeding period of sucrose and alcoholic diets. Alcohol intake reduced the number of BrdU+ cells in SGZ, SVZ, and hypothalamus. The treatments (URB597, ACEA, JWH133) exerted a differential increase in alcohol consumption over time, but JWH133 specifically counteracted the deleterious effect of ethanol on NPC proliferation in the SVZ and SGZ, and ACEA reversed this effect in the SGZ only. JWH133 also induced an increased number of BrdU+ cells expressing neuron-specific β3-tubulin in the SVZ and SGZ. These results indicated that the specific activation of CB2 receptors rescued alcohol-induced impaired NPC proliferation, which is a potential clinical interest for the risk of neural damage in alcohol dependence.

Keywords: ACEA; CB1 receptor; CB2 receptor; JWH133; alcohol; neurogenesis

References

  1. Pharmacol Ther. 2011 Dec;132(3):215-41 - PubMed
  2. Glia. 2010 Jul;58(9):1017-30 - PubMed
  3. Front Cell Neurosci. 2015 Mar 27;9:98 - PubMed
  4. Neuropsychopharmacology. 2015 Jan;40(2):488-501 - PubMed
  5. Alcohol Clin Exp Res. 2012 Jun;36(6):984-94 - PubMed
  6. Neuropsychopharmacology. 2007 Jan;32(1):117-26 - PubMed
  7. J Neurosci Methods. 2011 Oct 15;201(2):307-14 - PubMed
  8. Pharmacol Biochem Behav. 2005 Jun;81(2):369-80 - PubMed
  9. Pharmacol Res. 2014 Aug;86:11-7 - PubMed
  10. Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7919-24 - PubMed
  11. Neuropharmacology. 2006 Jun;50(7):834-44 - PubMed
  12. Behav Brain Res. 2012 Feb 14;227(2):450-8 - PubMed
  13. Annu Rev Neurosci. 2012;35:529-58 - PubMed
  14. PLoS One. 2013 May 31;8(5):e64750 - PubMed
  15. Br J Pharmacol. 2014 Jan;171(2):468-79 - PubMed
  16. Eur J Neurosci. 2011 May;33(9):1577-86 - PubMed
  17. Curr Neuropharmacol. 2007;5(2):73-80 - PubMed
  18. J Neurosci. 2002 Nov 15;22(22):9771-5 - PubMed
  19. FASEB J. 2005 Oct;19(12):1704-6 - PubMed
  20. Psychopharmacology (Berl). 2002 Jan;159(2):181-7 - PubMed
  21. Neuropharmacology. 2009 Mar;56(3):653-64 - PubMed
  22. J Biol Chem. 2012 Jan 6;287(2):1198-209 - PubMed
  23. J Neurochem. 2003 Feb;84(4):698-704 - PubMed
  24. Alcohol. 2004 May;33(1):63-71 - PubMed
  25. PLoS One. 2013;8(1):e54271 - PubMed
  26. Alcohol Res Health. 2003;27(2):186-96 - PubMed
  27. J Neurochem. 2008 Jan;104(1):233-43 - PubMed
  28. J Neurosci. 2004 Oct 27;24(43):9714-22 - PubMed
  29. Pharmacogenomics J. 2007 Dec;7(6):380-5 - PubMed
  30. Addict Biol. 2006 Sep;11(3-4):195-269 - PubMed
  31. Mol Cell Neurosci. 2008 Aug;38(4):526-36 - PubMed
  32. Mini Rev Med Chem. 2007 Aug;7(8):769-79 - PubMed
  33. Alcohol Alcohol. 2009 Mar-Apr;44(2):115-27 - PubMed
  34. Science. 2003 Oct 3;302(5642):84-8 - PubMed
  35. Biochim Biophys Acta. 2005 Oct 1;1736(3):211-20 - PubMed
  36. J Neuroimmune Pharmacol. 2013 Jun;8(3):608-20 - PubMed
  37. Alcohol. 2000 Feb;20(2):149-59 - PubMed
  38. Biochem J. 2007 May 15;404(1):97-104 - PubMed
  39. CNS Drug Rev. 2006 Spring;12(1):21-38 - PubMed
  40. Pharmacol Biochem Behav. 2014 Sep;124:260-8 - PubMed
  41. Curr Opin Neurobiol. 2014 Dec;29:1-8 - PubMed
  42. Eur J Neurosci. 2007 Jul;26(2):476-86 - PubMed
  43. Prog Lipid Res. 2013 Oct;52(4):633-50 - PubMed
  44. Pharmacol Rep. 2006 Nov-Dec;58(6):876-83 - PubMed
  45. Psychopharmacology (Berl). 2008 Jul;198(4):449-60 - PubMed
  46. Alcohol Alcohol. 2004 Jul-Aug;39(4):297-302 - PubMed
  47. Nat Rev Neurosci. 2010 May;11(5):339-50 - PubMed
  48. J Med Chem. 2013 Jun 13;56(11):4537-50 - PubMed
  49. Exp Neurol. 2010 Jul;224(1):37-47 - PubMed
  50. Drug Alcohol Depend. 2009 Jan 1;99(1-3):354-8 - PubMed
  51. J Neurophysiol. 2002 May;87(5):2385-97 - PubMed

Publication Types