Display options
Share it on

Front Microbiol. 2015 Sep 30;6:1054. doi: 10.3389/fmicb.2015.01054. eCollection 2015.

Hydrological pulse regulating the bacterial heterotrophic metabolism between Amazonian mainstems and floodplain lakes.

Frontiers in microbiology

Luciana O Vidal, Gwenäel Abril, Luiz F Artigas, Michaela L Melo, Marcelo C Bernardes, Lúcia M Lobão, Mariana C Reis, Patrícia Moreira-Turcq, Marc Benedetti, Valdemar L Tornisielo, Fabio Roland

Affiliations

  1. Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Rio de Janeiro, Brazil.
  2. Laboratoire Environnements et Paléoenvironnements Océaniques, Université Bordeaux 1 Bordeaux, France ; Departamento de Geoquímica, Universidade Federal Fluminense Rio de Janeiro, Brazil.
  3. Laboratoire d'Océanologie et Géosciences, Université du Littoral Côte d'Opale Wimereux, France.
  4. Departamento de Hidrobiologia, Universidade Federal de São Carlos São Carlos, Brazil.
  5. Departamento de Geoquímica, Universidade Federal Fluminense Rio de Janeiro, Brazil.
  6. Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora Juiz de Fora, Brazil.
  7. Institut de Recherche pour le Développement, Géosciences Environnement Toulouse Lima, Peru.
  8. Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot Paris, France.
  9. Laboratório de Ecotoxicologia, Centro de Energia Nuclear e Agricultura, São Paulo Universidade Federal de São Paulo São Paulo, Brazil.

PMID: 26483776 PMCID: PMC4588699 DOI: 10.3389/fmicb.2015.01054

Abstract

We evaluated in situ rates of bacterial carbon processing in Amazonian floodplain lakes and mainstems, during both high water (HW) and low water (LW) phases (p < 0.05). Our results showed that bacterial production (BP) was lower and more variable than bacterial respiration, determined as total respiration. Bacterial carbon demand was mostly accounted by BR and presented the same pattern that BR in both water phases. Bacterial growth efficiency (BGE) showed a wide range (0.2-23%) and low mean value of 3 and 6%, (in HW and LW, respectively) suggesting that dissolved organic carbon was mostly allocated to catabolic metabolism. However, BGE was regulated by BP in LW phase. Consequently, changes in BGE showed the same pattern that BP. In addition, the hydrological pulse effects on mainstems and floodplains lakes connectivity were found for BP and BGE in LW. Multiple correlation analyses revealed that indexes of organic matter (OM) quality (chlorophyll-a, N stable isotopes and C/N ratios) were the strongest seasonal drivers of bacterial carbon metabolism. Our work indicated that: (i) the bacterial metabolism was mostly driven by respiration in Amazonian aquatic ecosystems resulting in low BGE in either high or LW phase; (ii) the hydrological pulse regulated the bacterial heterotrophic metabolism between Amazonian mainstems and floodplain lakes mostly driven by OM quality.

Keywords: Amazonian freshwater ecosystems; bacterial carbon demand; bacterial growth efficiency; bacterial production; bacterial respiration; hydrological pulse

References

  1. PLoS One. 2012;7(9):e46141 - PubMed
  2. Front Microbiol. 2013 Jun 21;4:167 - PubMed
  3. Commun Integr Biol. 2010 Nov;3(6):491-4 - PubMed
  4. Ecology. 2010 May;91(5):1466-76 - PubMed
  5. Microb Ecol. 1995 Jan;29(1):63-70 - PubMed
  6. Microb Ecol. 2013 Nov;66(4):871-8 - PubMed
  7. Microb Ecol. 2006 Aug;52(2):358-64 - PubMed
  8. Microb Ecol. 2006 Aug;52(2):334-44 - PubMed
  9. Nature. 2014 Jan 16;505(7483):395-8 - PubMed
  10. FEMS Microbiol Ecol. 2006 Apr;56(1):8-17 - PubMed

Publication Types