Display options
Share it on

Front Immunol. 2015 Sep 29;6:499. doi: 10.3389/fimmu.2015.00499. eCollection 2015.

Interplay between Transcription Factors and the Epigenome: Insight from the Role of RUNX1 in Leukemia.

Frontiers in immunology

Kate H Brettingham-Moore, Phillippa C Taberlay, Adele F Holloway

Affiliations

  1. School of Medicine, University of Tasmania , Hobart, TAS , Australia.
  2. Genomics and Epigenetics Program, The Garvan Institute of Medical Research , Sydney, NSW , Australia.

PMID: 26483790 PMCID: PMC4586508 DOI: 10.3389/fimmu.2015.00499

Abstract

The genome has the ability to respond in a precise and co-ordinated manner to cellular signals. It achieves this through the concerted actions of transcription factors and the chromatin platform, which are targets of the signaling pathways. Our understanding of the molecular mechanisms through which transcription factors and the chromatin landscape each control gene activity has expanded dramatically over recent years, and attention has now turned to understanding the complex, multifaceted interplay between these regulatory layers in normal and disease states. It has become apparent that transcription factors as well as the components and modifiers of the epigenetic machinery are frequent targets of genomic alterations in cancer cells. Through the study of these factors, we can gain unique insight into the dynamic interplay between transcription factors and the epigenome, and how their dysregulation leads to aberrant gene expression programs in cancer. Here, we will highlight how these factors normally co-operate to establish and maintain the transcriptional and epigenetic landscape of cells, and how this is reprogramed in cancer, focusing on the RUNX1 transcription factor and oncogenic derivative RUNX1-ETO in leukemia as paradigms of transcriptional and epigenetic reprograming.

Keywords: RUNX1; cancer; chromatin; epigenetic mechanisms; epigenome

References

  1. N Engl J Med. 2010 Dec 16;363(25):2424-33 - PubMed
  2. Nat Genet. 2013 Jun;45(6):592-601 - PubMed
  3. Oncogene. 2006 Sep 21;25(42):5777-86 - PubMed
  4. Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):6800-6 - PubMed
  5. Leukemia. 2012 Aug;26(8):1829-41 - PubMed
  6. Mol Cell. 2011 May 6;42(3):274-84 - PubMed
  7. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10860-5 - PubMed
  8. J Biol Chem. 2004 Apr 9;279(15):15630-8 - PubMed
  9. Cancer Res. 2005 Feb 15;65(4):1277-84 - PubMed
  10. J Mol Biol. 2011 May 27;409(1):36-46 - PubMed
  11. Mol Cell. 2003 Feb;11(2):391-403 - PubMed
  12. Mol Cell. 2011 Mar 18;41(6):704-19 - PubMed
  13. Mol Cell Biol. 2004 Feb;24(3):1033-43 - PubMed
  14. Mol Cell Biol. 1998 Dec;18(12):7185-91 - PubMed
  15. J Am Chem Soc. 2010 Feb 17;132(6):1782-3 - PubMed
  16. Front Biosci (Landmark Ed). 2012 Jan 01;17:1120-39 - PubMed
  17. J Cell Biochem. 1999;Suppl 32-33:51-8 - PubMed
  18. Nat Rev Cancer. 2002 Jul;2(7):502-13 - PubMed
  19. Nat Genet. 2005 Apr;37(4):391-400 - PubMed
  20. Nature. 2005 Jun 2;435(7042):637-45 - PubMed
  21. Mol Cell Biol. 1998 Jul;18(7):3915-25 - PubMed
  22. Oncol Rep. 2013 Jul;30(1):185-92 - PubMed
  23. Mol Cell Biol. 2011 Jan;31(1):226-36 - PubMed
  24. Nucleic Acids Res. 1983 Oct 11;11(19):6883-94 - PubMed
  25. EMBO J. 2012 Nov 14;31(22):4318-33 - PubMed
  26. Oncogenesis. 2015 Apr 13;4:e146 - PubMed
  27. Leuk Res. 2010 Sep;34(9):1203-13 - PubMed
  28. Cell. 2006 Apr 21;125(2):315-26 - PubMed
  29. Nature. 2009 Oct 8;461(7265):819-22 - PubMed
  30. Cell Rep. 2013 Dec 26;5(6):1625-38 - PubMed
  31. PLoS One. 2013;8(1):e55119 - PubMed
  32. Nat Genet. 2006 May;38(5):540-9 - PubMed
  33. Nat Rev Mol Cell Biol. 2015 Apr;16(4):245-57 - PubMed
  34. Int J Mol Sci. 2011;12(10):6544-65 - PubMed
  35. Cell Res. 2011 Mar;21(3):381-95 - PubMed
  36. PLoS Genet. 2008 Nov;4(11):e1000275 - PubMed
  37. Int J Biochem Cell Biol. 2009 Jan;41(1):155-63 - PubMed
  38. EMBO J. 1998 Jun 1;17(11):2994-3004 - PubMed
  39. Oncogene. 2003 Aug 14;22(34):5229-37 - PubMed
  40. EMBO J. 2011 Aug 26;30(19):4059-70 - PubMed
  41. Hum Mol Genet. 2007 Apr 15;16 Spec No 1:R50-9 - PubMed
  42. Leukemia. 2014 Jan;28(1):88-97 - PubMed
  43. Cell Rep. 2012 Nov 29;2(5):1411-24 - PubMed
  44. Clin Cancer Res. 2006 Feb 1;12(3 Pt 1):989-95 - PubMed
  45. Blood. 2013 Jan 17;121(3):499-509 - PubMed
  46. Cell Rep. 2013 Sep 26;4(6):1131-43 - PubMed
  47. Nat Cell Biol. 2010 Sep;12(9):853-62 - PubMed
  48. Blood. 2012 Nov 8;120(19):4038-48 - PubMed
  49. Science. 2011 Aug 5;333(6043):765-9 - PubMed
  50. Oncogene. 2004 May 24;23(24):4220-4 - PubMed
  51. J Biol Chem. 2011 Jan 7;286(1):208-15 - PubMed
  52. J Clin Invest. 2014 Jan;124(1):14-6 - PubMed
  53. Oncogene. 2013 May 16;32(20):2565-75 - PubMed
  54. Mol Cell Biol. 1996 Jul;16(7):3967-79 - PubMed
  55. Mol Cell Biol. 1994 Jan;14(1):840-50 - PubMed
  56. J Pathol. 2007 Aug;212(4):368-77 - PubMed
  57. Blood. 2012 Oct 11;120(15):3058-68 - PubMed
  58. Mol Cell Biol. 2007 Oct;27(20):6987-95 - PubMed
  59. Genes Dev. 2008 Mar 1;22(5):640-53 - PubMed
  60. Mol Cell Biol. 1998 Dec;18(12):7176-84 - PubMed
  61. Cell. 2012 Jul 6;150(1):12-27 - PubMed
  62. Mol Cell Biol. 2001 Oct;21(19):6470-83 - PubMed
  63. PLoS Comput Biol. 2014 Oct 23;10(10):e1003867 - PubMed
  64. Oncogene. 2008 Oct 2;27(44):5759-73 - PubMed

Publication Types