Display options
Share it on

J Neurotrauma. 2016 Oct 01;33(19):1732-1750. doi: 10.1089/neu.2015.4268. Epub 2015 Dec 29.

Microglial/Macrophage Polarization Dynamics following Traumatic Brain Injury.

Journal of neurotrauma

Alok Kumar, Dulce-Mariely Alvarez-Croda, Bogdan A Stoica, Alan I Faden, David J Loane

Affiliations

  1. 1 Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine , Baltimore, Maryland.
  2. 2 Posgrado en Neuroetologia, Universidad Veracruzana , Xalapa, Mexico .

PMID: 26486881 PMCID: PMC5065034 DOI: 10.1089/neu.2015.4268

Abstract

Activated microglia and macrophages exert dual beneficial and detrimental roles after central nervous system injury, which are thought to be due to their polarization along a continuum from a classical pro-inflammatory M1-like state to an alternative anti-inflammatory M2-like state. The goal of the present study was to analyze the temporal dynamics of microglia/macrophage polarization within the lesion micro-environment following traumatic brain injury (TBI) using a moderate-level controlled cortical impact (CCI) model in mice. We performed a detailed phenotypic analysis of M1- and M2-like polarized microglia/macrophages, as well as nicotinamide adenine dinucleotide phosphate oxidase (NOX2) expression, through 7 days post-injury using real-time polymerase chain reaction (qPCR), flow cytometry and image analyses. We demonstrated that microglia/macrophages express both M1- and M2-like phenotypic markers early after TBI, but the transient up-regulation of the M2-like phenotype was replaced by a predominant M1- or mixed transitional (Mtran) phenotype that expressed high levels of NOX2 at 7 days post-injury. The shift towards the M1-like and Mtran phenotype was associated with increased cortical and hippocampal neurodegeneration. In a follow up study, we administered a selective NOX2 inhibitor, gp91ds-tat, to CCI mice starting at 24 h post-injury to investigate the relationship between NOX2 and M1-like/Mtran phenotypes. Delayed gp91ds-tat treatment altered M1-/M2-like balance in favor of the anti-inflammatory M2-like phenotype, and significantly reduced oxidative damage in neurons at 7 days post-injury. Therefore, our data suggest that despite M1-like and M2-like polarized microglia/macrophages being activated after TBI, the early M2-like response becomes dysfunctional over time, resulting in development of pathological M1-like and Mtran phenotypes driven by increased NOX2 activity.

Keywords: M1-like; M2-like; NOX2, polarization; microglia/macrophage; traumatic brain injury

Conflict of interest statement

Author Disclosure Statement No competing financial interests exist.

References

  1. Neurotherapeutics. 2010 Oct;7(4):354-65 - PubMed
  2. J Neuroinflammation. 2014 Jun 03;11:98 - PubMed
  3. Nat Rev Neurosci. 2011 Jun 15;12(7):388-99 - PubMed
  4. J Cereb Blood Flow Metab. 2009 Jul;29(7):1262-72 - PubMed
  5. J Neuroinflammation. 2014 Jul 25;11:127 - PubMed
  6. J Neuropathol Exp Neurol. 2014 Jan;73(1):14-29 - PubMed
  7. J Cereb Blood Flow Metab. 2012 Jan;32(1):137-49 - PubMed
  8. J Neuroinflammation. 2014 Apr 24;11:82 - PubMed
  9. J Neuroimmune Pharmacol. 2009 Dec;4(4):399-418 - PubMed
  10. J Transl Med. 2007 Feb 21;5:11 - PubMed
  11. Neurobiol Dis. 2011 Jun;42(3):341-8 - PubMed
  12. Antioxid Redox Signal. 2013 Aug 20;19(6):595-637 - PubMed
  13. PLoS One. 2014 Aug 25;9(8):e104754 - PubMed
  14. J Neurotrauma. 2013 Mar 1;30(5):403-12 - PubMed
  15. Brain Res. 2012 Oct 24;1481:49-58 - PubMed
  16. Eur J Immunol. 2013 Aug;43(8):2010-22 - PubMed
  17. J Neurosci Res. 2008 Jul;86(9):1944-58 - PubMed
  18. J Neurosci. 2014 Jun 25;34(26):8904-17 - PubMed
  19. Nat Med. 2009 Apr;15(4):377-9 - PubMed
  20. J Neurochem. 2012 Jan;120(2):292-301 - PubMed
  21. J Neurosci. 2015 Jan 14;35(2):748-60 - PubMed
  22. Neurobiol Aging. 2013 May;34(5):1397-411 - PubMed
  23. J Neurotrauma. 1999 Nov;16(11):1023-34 - PubMed
  24. J Neurosci. 2009 Oct 28;29(43):13435-44 - PubMed
  25. Am J Pathol. 2013 Nov;183(5):1352-63 - PubMed
  26. J Biol Chem. 2004 Jan 9;279(2):1415-21 - PubMed
  27. J Cereb Blood Flow Metab. 2013 Dec;33(12):1864-74 - PubMed
  28. Nature. 2008 May 15;453(7193):314-21 - PubMed
  29. Exp Neurol. 2012 Dec;238(2):176-82 - PubMed
  30. J Neurosci Res. 2004 Aug 15;77(4):540-51 - PubMed
  31. Neuropathol Appl Neurobiol. 2013 Oct;39(6):654-66 - PubMed
  32. Science. 2010 Nov 5;330(6005):841-5 - PubMed
  33. Brain. 2013 Jan;136(Pt 1):28-42 - PubMed
  34. J Cereb Blood Flow Metab. 2014 Jul;34(7):1223-32 - PubMed
  35. Antioxid Redox Signal. 2013 May 1;18(13):1537-48 - PubMed
  36. Neurochem Int. 2013 Nov;63(6):583-93 - PubMed
  37. J Neurotrauma. 2007 Nov;24(11):1719-42 - PubMed
  38. J Neuroinflammation. 2010 Jul 26;7:41 - PubMed
  39. Ann Neurol. 2011 Sep;70(3):374-83 - PubMed
  40. J Neuroinflammation. 2005 Sep 12;2:20 - PubMed
  41. PLoS One. 2012;7(4):e34504 - PubMed
  42. J Neurotrauma. 2014 Oct 15;31(20):1677-88 - PubMed
  43. PLoS One. 2012;7(7):e41892 - PubMed
  44. Circ Res. 2001 Aug 31;89(5):408-14 - PubMed
  45. PLoS One. 2014 Jun 17;9(6):e99897 - PubMed
  46. Ann Neurol. 2014 Feb;75(2):241-54 - PubMed
  47. Exp Neurol. 2012 Sep;237(1):147-52 - PubMed
  48. J Neuroinflammation. 2012 Feb 28;9:43 - PubMed
  49. Neuron. 2014 Sep 3;83(5):1098-116 - PubMed
  50. Neurobiol Aging. 2013 Apr;34(4):1051-9 - PubMed
  51. Brain Res. 2015 Sep 4;1619:1-11 - PubMed
  52. PLoS One. 2013;8(1):e53376 - PubMed

Publication Types

Grant support