Display options
Share it on

Pharmacol Res Perspect. 2015 Oct;3(5):e00160. doi: 10.1002/prp2.160. Epub 2015 Jul 31.

Inhibition of hERG potassium channel by the antiarrhythmic agent mexiletine and its metabolite m-hydroxymexiletine.

Pharmacology research & perspectives

Roberta Gualdani, Francesco Tadini-Buoninsegni, Mariagrazia Roselli, Ivana Defrenza, Marialessandra Contino, Nicola Antonio Colabufo, Giovanni Lentini

Affiliations

  1. Dipartimento di Chimica "Ugo Schiff", Università di Firenze via della Lastruccia 3, Sesto Fiorentino, FI, 50019, Italy.
  2. Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro" via Orabona 4, Bari, 70125, Italy.

PMID: 26516576 PMCID: PMC4618635 DOI: 10.1002/prp2.160

Abstract

Mexiletine is a sodium channel blocker, primarily used in the treatment of ventricular arrhythmias. Moreover, recent studies have demonstrated its therapeutic value to treat myotonic syndromes and to relieve neuropathic pain. The present study aims at investigating the direct blockade of hERG potassium channel by mexiletine and its metabolite m-hydroxymexiletine (MHM). Our data show that mexiletine inhibits hERG in a time- and voltage-dependent manner, with an IC50 of 3.7 ± 0.7 μmol/L. Analysis of the initial onset of current inhibition during a depolarizing test pulse indicates mexiletine binds preferentially to the open state of the hERG channel. Looking for a possible mexiletine alternative, we show that m-hydroxymexiletine (MHM), a minor mexiletine metabolite recently reported to be as active as the parent compound in an arrhythmia animal model, is a weaker hERG channel blocker, compared to mexiletine (IC50 = 22.4 ± 1.2 μmol/L). The hERG aromatic residues located in the S6 helix (Tyr652 and Phe656) are crucial in the binding of mexiletine and the different affinities of mexiletine and MHM with hERG channel are interpreted by modeling their corresponding binding interactions through ab initio calculations. The simulations demonstrate that the introduction of a hydroxyl group on the meta-position of the aromatic portion of mexiletine weakens the interaction of the drug xylyloxy moiety with Tyr652. These results provide further insights into the molecular basis of drug/hERG interactions and, in agreement with previously reported results on clofilium and ibutilide analogs, support the possibility of reducing hERG potency and related toxicity by modifying the aromatic pattern of substitution of clinically relevant compounds.

Keywords: Ab initio calculations; antiarrhythmic drug; hERG channel; metabolite switch; mexiletine

References

  1. Nature. 1996 Nov 7;384(6604):80-3 - PubMed
  2. Br J Pharmacol. 2014 Oct;171(19):4455-63 - PubMed
  3. J Chem Inf Model. 2009 Apr;49(4):944-55 - PubMed
  4. J Med Chem. 2012 Feb 9;55(3):1418-22 - PubMed
  5. Nature. 2006 Mar 23;440(7083):463-9 - PubMed
  6. J Chem Theory Comput. 2007 Nov;3(6):2011-33 - PubMed
  7. Mol Pharmacol. 2006 Feb;69(2):509-19 - PubMed
  8. Pflugers Arch. 1997 Nov;434(6):855-8 - PubMed
  9. Br J Pharmacol. 2005 Mar;144(6):840-8 - PubMed
  10. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12329-33 - PubMed
  11. Neurology. 2010 May 4;74(18):1441-8 - PubMed
  12. Pharmacol Ther. 2008 Aug;119(2):118-32 - PubMed
  13. Br J Clin Pharmacol. 1978 Aug;6(2):103-8 - PubMed
  14. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):2208-12 - PubMed
  15. Nature. 1996 Feb 29;379(6568):833-6 - PubMed
  16. Circ Arrhythm Electrophysiol. 2013 Jun;6(3):614-22 - PubMed
  17. Front Pharmacol. 2012 Feb 15;3:17 - PubMed
  18. Expert Opin Investig Drugs. 2010 Dec;19(12):1465-74 - PubMed
  19. J Gen Physiol. 1990 Jul;96(1):195-215 - PubMed
  20. Brain. 2012 Sep;135(Pt 9):2585-612 - PubMed
  21. Cardiovasc Res. 2004 Apr 1;62(1):9-33 - PubMed
  22. J Med Chem. 2003 May 22;46(11):2017-22 - PubMed
  23. Jpn Heart J. 1985 Mar;26(2):271-87 - PubMed
  24. Nature. 1996 Nov 7;384(6604):78-80 - PubMed
  25. J Mol Cell Cardiol. 1996 May;28(5):893-903 - PubMed
  26. Circulation. 1996 Nov 15;94(10 ):2572-9 - PubMed
  27. J Pharmacol Exp Ther. 1987 Dec;243(3):1218-24 - PubMed
  28. Chembiochem. 2002 May 3;3(5):455-9 - PubMed
  29. Neurotherapeutics. 2007 Apr;4(2):184-98 - PubMed
  30. Am J Physiol. 1999 Sep;277(3 Pt 2):H1081-8 - PubMed
  31. JAMA. 2012 Oct 3;308(13):1357-65 - PubMed
  32. J Mol Cell Cardiol. 2004 Jan;36(1):151-60 - PubMed
  33. Br J Pharmacol. 2000 Aug;130(8):1967-75 - PubMed
  34. J Mol Cell Cardiol. 2014 Sep;74:220-30 - PubMed
  35. Exp Neurol. 2014 Nov;261:812-5 - PubMed
  36. Chirality. 2006 May 5;18(4):227-31 - PubMed
  37. Bioorg Med Chem Lett. 2013 Sep 1;23(17):4820-3 - PubMed
  38. Br J Pharmacol. 2008 Oct;155(3):365-73 - PubMed
  39. J Gen Physiol. 2000 Mar;115(3):229-40 - PubMed
  40. J Gen Physiol. 1977 Apr;69(4):497-515 - PubMed
  41. Biochem Biophys Res Commun. 2003 Jun 27;306(2):388-93 - PubMed
  42. J Pharmacol Exp Ther. 2001 May;297(2):753-61 - PubMed
  43. J Clin Invest. 1997 Apr 1;99(7):1714-20 - PubMed
  44. J Mol Cell Cardiol. 2012 Jan;52(1):185-95 - PubMed
  45. Phys Rev A Gen Phys. 1988 Sep 15;38(6):3098-3100 - PubMed
  46. J Med Chem. 2003 Nov 20;46(24):5238-48 - PubMed
  47. Am J Emerg Med. 2011 Nov;29(9):1235.e5-6 - PubMed
  48. Br J Pharmacol. 2002 Jul;136(5):717-29 - PubMed
  49. Epilepsy Res. 2003 Jun-Jul;55(1-2):147-57 - PubMed
  50. Br J Pharmacol. 2011 Apr;162(7):1542-52 - PubMed
  51. Cochrane Database Syst Rev. 2005 Oct 19;(4):CD003345 - PubMed
  52. Trends Pharmacol Sci. 2005 Mar;26(3):119-24 - PubMed
  53. Biophys J. 1996 Jun;70(6):2704-15 - PubMed
  54. Heart Rhythm. 2011 May;8(5):762-9 - PubMed
  55. Physiol Rev. 2012 Jul;92 (3):1393-478 - PubMed
  56. J Med Chem. 2012 Dec 13;55(23):10387-404 - PubMed
  57. Mol Pharmacol. 2006 Mar;69(3):823-32 - PubMed
  58. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11578-83 - PubMed
  59. J Clin Pharmacol. 1984 Apr;24(4):129-47 - PubMed
  60. Clin Exp Pharmacol Physiol. 2000 Oct;27(10 ):753-66 - PubMed
  61. Bioorg Med Chem. 2004 Nov 1;12(21):5533-43 - PubMed

Publication Types