Display options
Share it on

Clin Transl Imaging. 2015;3(5):365-372. doi: 10.1007/s40336-015-0139-6. Epub 2015 Sep 10.

PET imaging of the autonomic myocardial function: methods and interpretation.

Clinical and translational imaging

Walter Noordzij, Riemer H J A Slart

Affiliations

  1. Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands.

PMID: 26457273 PMCID: PMC4592500 DOI: 10.1007/s40336-015-0139-6

Abstract

Cardiac positron emission tomography (PET) is mainly applied in myocardial perfusion and viability detection. Noninvasive imaging of myocardial innervation using PET is a valuable additional methodology in cardiac imaging. Novel methods and different PET ligands have been developed to measure presynaptic and postsynaptic function of the cardiac neuronal system. Obtained PET data can be analysed quantitatively or interpreted qualitatively. Thus far, PET is not a widely used clinical application in autonomic heart imaging; however, due to its technical advantages, the excellent properties of the imaging agents, and the availability of tools for quantification, it deserves a better position in the clinic. From a historical point of view, the focus of PET software packages for image analysis was mainly oncology and neurology driven. Actually, commercially available software for cardiac PET image analysis is still only available for the quantification of myocardial blood flow. Thus far, no commercial software package is available for the interpretation and quantification of PET innervation scans. However, image data quantification and analysis of kinetic data can be performed using adjusted generic tools. This paper gives an overview of different neuronal PET ligands, interpretation and quantification of acquired PET data.

Keywords: Interpretation; Methods; Myocardial innervation; PET

References

  1. Neuropharmacology. 1996 Jun;35(6):725-34 - PubMed
  2. Nucl Med Biol. 2007 Jan;34(1):71-7 - PubMed
  3. Nucl Med Biol. 2010 May;37(4):517-26 - PubMed
  4. Nucl Med Biol. 1994 Feb;21(2):189-95 - PubMed
  5. J Am Coll Cardiol. 1999 Nov 1;34(5):1552-9 - PubMed
  6. Eur Heart J. 1988 Aug;9(8):844-52 - PubMed
  7. Pharmacol Ther. 2009 Feb;121(2):205-23 - PubMed
  8. Clin Physiol Funct Imaging. 2014 May;34(3):178-82 - PubMed
  9. J Nucl Med. 2008 Feb;49(2):234-41 - PubMed
  10. J Nucl Med. 2015 Sep;56(9):1429-33 - PubMed
  11. N Engl J Med. 2002 Mar 21;346(12):877-83 - PubMed
  12. N Engl J Med. 2005 Jan 20;352(3):225-37 - PubMed
  13. J Nucl Med. 1996 Dec;37(12 ):1923-31 - PubMed
  14. Nucl Med Biol. 1994 Feb;21(2):211-7 - PubMed
  15. Eur J Nucl Med Mol Imaging. 2005 Apr;32(4):443-7 - PubMed
  16. Circulation. 1994 Apr;89(4):1851-8 - PubMed
  17. JACC Cardiovasc Imaging. 2012 May;5(5):528-36 - PubMed
  18. Clin Positron Imaging. 1998 Mar;1(2):81-94 - PubMed
  19. Circulation. 1990 Aug;82(2):457-64 - PubMed
  20. Circ Cardiovasc Imaging. 2011 Jul;4(4):435-43 - PubMed
  21. J Nucl Med. 1990 Aug;31(8):1328-34 - PubMed
  22. J Am Coll Cardiol. 2010 May 18;55(20):2212-21 - PubMed
  23. Circulation. 2000 Apr 4;101(13):1552-8 - PubMed
  24. Nucl Med Biol. 2008 May;35(4):515-21 - PubMed
  25. J Nucl Med. 2014 Sep;55(9):1445-51 - PubMed
  26. Eur J Nucl Med Mol Imaging. 2007 Dec;34(12 ):1973-80 - PubMed
  27. J Heart Lung Transplant. 1992 Jul-Aug;11(4 Pt 2):S164-74 - PubMed
  28. J Nucl Med. 2002 Feb;43(2):215-26 - PubMed
  29. J Am Coll Cardiol. 2014 Jan 21;63(2):141-9 - PubMed
  30. Eur J Nucl Med Mol Imaging. 2002 Mar;29(3):295-304 - PubMed
  31. Circ Cardiovasc Imaging. 2010 Sep;3(5):595-603 - PubMed
  32. Nucl Med Biol. 2003 Nov;30(8):795-803 - PubMed
  33. J Nucl Med. 2008 Jul;49(7):1189-95 - PubMed
  34. Ann Nucl Med. 2014 Apr;28(3):187-95 - PubMed

Publication Types