Display options
Share it on

Craniomaxillofac Trauma Reconstr. 2015 Dec;8(4):289-98. doi: 10.1055/s-0034-1399800. Epub 2015 Feb 03.

A Protocol to Reduce Interobserver Variability in the Computed Tomography Measurement of Orbital Floor Fractures.

Craniomaxillofacial trauma & reconstruction

Chuan Han Ang, Jin Rong Low, Jia Yi Shen, Elijah Zheng Yang Cai, Eileen Chor Hoong Hing, Yiong Huak Chan, Gangadhara Sundar, Thiam Chye Lim

Affiliations

  1. Department of Surgery, National University of Singapore, Singapore.
  2. Department of Surgery, National University Health System, Singapore.
  3. Biostatistics Unit, National University of Singapore, Singapore.
  4. Department of Ophthalmology, National University Health System, Singapore.
  5. Department of Surgery, National University Health System, Singapore ; Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, National University Health System, Singapore.

PMID: 26576233 PMCID: PMC4631555 DOI: 10.1055/s-0034-1399800

Abstract

Orbital fracture detection and size determination from computed tomography (CT) scans affect the decision to operate, the type of surgical implant used, and postoperative outcomes. However, the lack of standardization of radiological signs often leads to the false-positive detection of orbital fractures, while nonstandardized landmarks lead to inaccurate defect measurements. We aim to design a novel protocol for CT measurement of orbital floor fractures and evaluate the interobserver variability on CT scan images. Qualitative aspects of this protocol include identifying direct and indirect signs of orbital fractures on CT scan images. Quantitative aspects of this protocol include measuring the surface area of pure orbital floor fractures using computer software. In this study, 15 independent observers without clinical experience in orbital fracture detection and measurement measured the orbital floor fractures of three randomly selected patients following the protocol. The time required for each measurement was recorded. The intraclass correlation coefficient of the surface area measurements is 0.999 (0.997-1.000) with p-value < 0.001. This suggests that any observer measuring the surface area will obtain a similar estimation of the fractured surface area. The maximum error limit was 0.901 cm(2) which is less than the margin of error of 1 cm(2) in mesh trimming for orbital reconstruction. The average duration required for each measurement was 3 minutes 19 seconds (ranging from 1 minute 35 seconds to 5 minutes). Measurements performed with our novel protocol resulted in minimal interobserver variability. This protocol is effective and generated reproducible results, is easy to teach and utilize, and its findings can be interpreted easily.

Keywords: computed tomography; education; imaging; maxillofacial trauma; orbital fracture

References

  1. Ophthalmology. 2002 Jul;109(7):1207-10; discussion 1210-1; quiz 1212-3 - PubMed
  2. Int J Oral Maxillofac Surg. 2001 Feb;30(1):26-31 - PubMed
  3. J Oral Maxillofac Surg. 2001 Dec;59(12 ):1437-42 - PubMed
  4. Comput Med Imaging Graph. 1988 Jan-Feb;12 (1):47-57 - PubMed
  5. Int J Oral Maxillofac Surg. 2003 Jun;32(3):257-62 - PubMed
  6. Clin Radiol. 2005 Dec;60(12 ):1268-79 - PubMed
  7. J Oral Maxillofac Surg. 2000 Jun;58(6):617-20; discussion 620-1 - PubMed
  8. Eur J Radiol. 2012 Sep;81(9):2251-4 - PubMed
  9. J Craniofac Surg. 2009 Jul;20(4):1218-23 - PubMed
  10. J Oral Maxillofac Surg. 2006 Jan;64(1):68-73 - PubMed
  11. Ophthal Plast Reconstr Surg. 1998 Jan;14 (1):19-26 - PubMed
  12. Ophthalmology. 1983 Sep;90(9):1066-70 - PubMed
  13. Plast Reconstr Surg. 1986 Feb;77(2):203-14 - PubMed
  14. Emerg Radiol. 2004 Feb;10 (4):168-72 - PubMed
  15. Eur J Radiol. 2012 Jan;81(1):e58-61 - PubMed
  16. Ophthal Plast Reconstr Surg. 2010 Jan-Feb;26(1):26-9 - PubMed
  17. J Craniofac Surg. 2010 Jul;21(4):1153-7 - PubMed
  18. Int J Oral Maxillofac Surg. 2002 Aug;31(4):367-73 - PubMed
  19. J Craniomaxillofac Trauma. 1996 Summer;2(2):56-63; discussion 64 - PubMed
  20. Zhonghua Kou Qiang Yi Xue Za Zhi. 2011 Oct;46(10 ):595-9 - PubMed
  21. Klin Oczna. 2011;113(1-3):52-5 - PubMed
  22. Int J Oral Maxillofac Surg. 2007 Mar;36(3):193-9 - PubMed
  23. J Oral Maxillofac Surg. 2007 Oct;65(10 ):1926-34 - PubMed
  24. J Oral Maxillofac Surg. 2000 Jun;58(6):645-8 - PubMed
  25. Curr Opin Ophthalmol. 2004 Oct;15(5):416-21 - PubMed
  26. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002 Apr;93(4):382-93 - PubMed
  27. J Oral Maxillofac Surg. 2012 Jul;70(7):1627-32 - PubMed
  28. Curr Opin Ophthalmol. 2004 Oct;15(5):411-5 - PubMed
  29. J Craniomaxillofac Surg. 2002 Jun;30(3):153-9 - PubMed
  30. Br J Ophthalmol. 1993 Feb;77(2):100-2 - PubMed
  31. Facial Plast Surg. 2007 Aug;23(3):190-9 - PubMed
  32. Ophthal Plast Reconstr Surg. 2003 May;19(3):207-11 - PubMed
  33. Curr Probl Diagn Radiol. 1993 Jul-Aug;22(4):145-88 - PubMed
  34. Invest Ophthalmol Vis Sci. 2006 Feb;47(2):509-13 - PubMed
  35. J Craniofac Surg. 2012 Sep;23 (5):1567-73 - PubMed
  36. Ophthalmology. 1985 Nov;92 (11):1523-8 - PubMed
  37. J Oral Maxillofac Surg. 2002 Nov;60(11):1267-72; discussion 1273-4 - PubMed

Publication Types