Display options
Share it on

J Exerc Nutrition Biochem. 2015 Sep;19(3):225-34. doi: 10.5717/jenb.2015.15090710. Epub 2015 Sep 30.

Effects of long-term resistance exercise training on autophagy in rat skeletal muscle of chloroquine-induced sporadic inclusion body myositis.

Journal of exercise nutrition & biochemistry

Insu Kwon, Youngil Lee, Ludmila M Cosio-Lima, Joon-Yong Cho, Dong-Chul Yeom

Affiliations

  1. Department of Exercise Science and Community Health, University of West Florida, Pensacola, USA.
  2. Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, Republic of Korea.
  3. Department of Physical Education, Korea National Sport University, Seoul, Republic of Korea.

PMID: 26525066 PMCID: PMC4624124 DOI: 10.5717/jenb.2015.15090710

Abstract

PURPOSE: We examined whether resistance exercise training restores impaired autophagy functions caused by Chloroquine (CQ)-induced Sporadic Inclusion Body Myositis (sIBM) in rat skeletal muscle.

METHODS: Male wistar rats were randomly assigned into three groups: Sham (n = 6), CQ (n = 6), and CQ + Exercise (CE, n = 6). To create a rat model of sIBM, rats in the CQ and CE group were intraperitoneally injected with CQ 5 days a week for 16 weeks. Rats in the CE group performed resistance exercise training 3 times a week for 8 weeks in conjunction with CQ starting from week 9 to week 16. During the training period, maximal carrying load, body weight, muscle weight, and relative muscle weight were measured. Autophagy responses were examined by measuring specific markers.

RESULTS: While maximal carrying capacity for resistance exercise training was dramatically increased in the CE group, no significant changes occurred in the skeletal muscle weight as well as in the relative muscle weight of CE compared to the other groups. CQ treatment caused significant increases in the levels of Beclin-1 and p62, and decreases in the levels of LAMP-2 proteins. Interestingly, no significant differences in the LC3-II/I ratio or the LC3-II protein levels were observed. Although CQ-treatment groups suppressed the levels of the potent autophagy inducer, BNIP3, p62 levels were decreased in only the CE group.

CONCLUSION: Our findings demonstrate that sIBM induced by CQ treatment results in muscle degeneration via impaired autophagy and that resistance exercise training improves movable loading activity. Finally, regular exercise training may provide protection against sIBM by enhancing the autophagy flux through p62 protein.

Keywords: Resistance exercise; autophagy; chloroquine; sIBM; skeletal muscles

References

  1. Am J Pathol. 2004 Jan;164(1):1-7 - PubMed
  2. Curr Opin Rheumatol. 2012 Mar;24(2):201-7 - PubMed
  3. Annu Rev Nutr. 2007;27:19-40 - PubMed
  4. Neuropathol Appl Neurobiol. 2013 Dec;39(7):750-61 - PubMed
  5. Brain. 2011 Nov;134(Pt 11):3167-75 - PubMed
  6. Muscle Nerve. 1987 Jul-Aug;10(6):516-23 - PubMed
  7. Curr Opin Cell Biol. 2010 Apr;22(2):140-9 - PubMed
  8. Nature. 2000 Aug 24;406(6798):906-10 - PubMed
  9. J Neuropathol Exp Neurol. 2012 Aug;71(8):680-93 - PubMed
  10. Biochem J. 2001 Nov 15;360(Pt 1):143-50 - PubMed
  11. J Physiol Biochem. 2013 Dec;69(4):697-705 - PubMed
  12. FEBS Lett. 2010 Apr 2;584(7):1411-6 - PubMed
  13. Muscle Nerve. 1993 Aug;16(8):819-26 - PubMed
  14. Can J Appl Physiol. 2004 Feb;29(1):16-31 - PubMed
  15. Neuropathol Appl Neurobiol. 2013 Dec;39(7):736-49 - PubMed
  16. J Pathol. 2010 May;221(1):3-12 - PubMed
  17. Nat Rev Mol Cell Biol. 2009 Jul;10 (7):458-67 - PubMed
  18. Neurosci Lett. 1995 Dec 29;202(1-2):77-80 - PubMed
  19. Cell. 2007 Dec 14;131(6):1149-63 - PubMed
  20. EMBO J. 2007 Jan 24;26(2):313-24 - PubMed
  21. J Clin Neurosci. 2008 Dec;15(12):1350-3 - PubMed
  22. Pathobiology. 2007;74(3):169-76 - PubMed
  23. Ann Neurol. 2007 May;61(5):476-83 - PubMed
  24. Nature. 2012 Jan 18;481(7382):511-5 - PubMed
  25. J Neuropathol Exp Neurol. 1980 Jan;39(1):65-81 - PubMed
  26. Curr Rheumatol Rep. 2012 Jun;14(3):244-51 - PubMed
  27. Autophagy. 2011 Dec;7(12):1415-23 - PubMed
  28. Cell Metab. 2009 Dec;10 (6):507-15 - PubMed
  29. EMBO J. 2000 Nov 1;19(21):5720-8 - PubMed
  30. Acta Neuropathol. 2004 Jan;107(1):59-65 - PubMed
  31. Acta Neuropathol. 2001 Jun;101(6):579-84 - PubMed
  32. FASEB J. 2013 Oct;27(10 ):4184-93 - PubMed
  33. J Biochem. 2002 May;131(5):647-51 - PubMed
  34. Neurosci Lett. 1994 Dec 5;182(2):151-4 - PubMed
  35. Ageing Res Rev. 2009 Jul;8(3):199-213 - PubMed
  36. J Physiol Biochem. 2012 Jun;68(2):229-35 - PubMed
  37. J Cell Biol. 2005 Nov 21;171(4):603-14 - PubMed
  38. Acta Neuropathol. 2009 May;117(5):569-74 - PubMed
  39. Cell Res. 2007 Oct;17 (10 ):839-49 - PubMed
  40. Neuromuscul Disord. 2013 May;23(5):404-12 - PubMed
  41. Brain Pathol. 2009 Jul;19(3):493-506 - PubMed
  42. Med Sci Sports Exerc. 2010 Feb;42(2):250-4 - PubMed
  43. Int J Biochem Cell Biol. 2003 May;35(5):676-84 - PubMed
  44. Cell Death Differ. 2009 Jul;16(7):939-46 - PubMed
  45. PLoS One. 2013;8(2):e57141 - PubMed
  46. Acta Neuropathol. 2009 May;117(5):575-82 - PubMed
  47. J Appl Physiol (1985). 2004 Mar;96(3):1097-104 - PubMed
  48. Acta Neuropathol. 2009 Sep;118(3):407-13 - PubMed
  49. Autophagy. 2012 Jan;8(1):88-97 - PubMed
  50. Muscle Nerve. 1997 Oct;20(10):1242-8 - PubMed
  51. Autophagy. 2007 Jul-Aug;3(4):323-8 - PubMed
  52. Autophagy. 2007 Nov-Dec;3(6):542-5 - PubMed
  53. Acta Pharmacol Sin. 2014 Jan;35(1):135-42 - PubMed
  54. Exp Gerontol. 2013 Apr;48(4):427-36 - PubMed
  55. Presse Med. 2011 Apr;40(4 Pt 2):e219-35 - PubMed
  56. Am J Pathol. 2002 Jan;160(1):255-63 - PubMed
  57. Autophagy. 2010 Feb;6(2):307-9 - PubMed
  58. Sports Med. 2014 May;44(5):625-40 - PubMed
  59. Am J Pathol. 2010 Sep;177(3):1377-87 - PubMed
  60. Autophagy. 2011 Dec;7(12):1405-6 - PubMed
  61. Int J Biochem Cell Biol. 2013 Oct;45(10):2209-14 - PubMed
  62. Mol Biol Cell. 2004 Mar;15(3):1101-11 - PubMed
  63. Nature. 2000 Aug 24;406(6798):902-6 - PubMed
  64. J Physiol Pharmacol. 2014 Apr;65(2):229-39 - PubMed
  65. Mol Biol Cell. 2002 Sep;13(9):3355-68 - PubMed

Publication Types