Display options
Share it on

J Nutr Sci. 2015 Jun 11;4:e24. doi: 10.1017/jns.2015.14. eCollection 2015.

Metabolism, health and fillet nutritional quality in Atlantic salmon (Salmo salar) fed diets containing n-3-rich microalgae.

Journal of nutritional science

Katerina Kousoulaki, Tone-Kari Knutsdatter Østbye, Aleksei Krasnov, Jacob Seilø Torgersen, Turid Mørkøre, John Sweetman

Affiliations

  1. Nofima AS , Department of Nutrition and Feed Technology , N-5141 Fyllingsdalen , Norway.
  2. Alltech Inc. , Sarney , Dunboyne , County Meath , Republic of Ireland.

PMID: 26495116 PMCID: PMC4611082 DOI: 10.1017/jns.2015.14

Abstract

Microalgae, as primary producers of EPA and DHA, are among the most prominent alternative sources to fish oil for n-3 long-chain PUFA in animal and human nutrition. The present study aimed to assess technical, nutritional and fish health aspects of producing n-3-rich Atlantic salmon (Salmo salar) fish fillets by dietary supplementation of increasing levels of a DHA-producing Schizochytrium sp. and reduced or without use of supplemental fish oil. Atlantic salmon smolt were fed diets with graded levels of microalgae for 12 weeks, during which all fish showed high feed intake rates with postprandial plasma leptin levels inversely correlating with final mean fish body weights. Fish performance was optimal in all experimental treatments (thermal growth coefficient about 4·0 and feed conversion ratio 0·8-0·9), protein digestibility was equal in all diets, whereas dietary lipid digestibility inversely correlated with the dietary levels of the SFA 16 : 0. Fillet quality was good and similar to the control in all treatments in terms of n-3 long-chain PUFA content, gaping, texture and liquid losses during thawing. Histological fluorescence staining and immunofluorescence analysis of salmon intestines (midgut: base of intestine and villi) revealed significant effects on slime, goblet cell production and inducible nitric oxide synthase (iNOS) activity with increasing levels of dietary Schizochytrium sp. supplementation. Microarray analysis did not reveal any signs of toxicity, stress, inflammation or any other negative effects from Schizochytrium sp. supplementation in diets for Atlantic salmon.

Keywords: 0_ScYE, 0 g/kg Scizochytrium sp. + yeast extract (control); 15_ScYE, 150 g/kg Scizochytrium sp. + yeast extract; 1_ScYE, 10 g/kg Scizochytrium sp. + yeast extract; 6_ScYE, 60 g/kg Scizochytrium sp. + yeast extract; ADC, apparent digestibility coefficient; CK, creatine kinase; FAME, fatty acid methyl esters; FCR, feed conversion ratio; Farmed salmon fish fillet nutritional quality; ISO, International Organization for Standardization; Microalgae; ScYE, Scizochytrium sp. + yeast extract; TGC, thermal growth coefficient; iNOS, inducible nitric oxide synthase; n-3 LC-PUFA, n-3 long-chain PUFA; n-3 Long-chain PUFA

References

  1. Eur J Clin Nutr. 1999 Apr;53 Suppl 1:S66-77 - PubMed
  2. Fish Shellfish Immunol. 2014 Sep;40(1):208-16 - PubMed
  3. Fish Physiol Biochem. 2012 Dec;38(6):1729-39 - PubMed
  4. Expert Rev Anti Infect Ther. 2012 Mar;10(3):391-400 - PubMed
  5. Nature. 2000 Apr 6;404(6778):661-71 - PubMed
  6. JAMA. 2002 Apr 10;287(14):1815-21 - PubMed
  7. Arch Neurol. 2005 Dec;62(12 ):1849-53 - PubMed
  8. Clin Nutr. 2014 Jun;33(3):399-405 - PubMed
  9. Am J Clin Nutr. 1994 Dec;60(6 Suppl):1002S-1009S - PubMed
  10. Comp Biochem Physiol Part D Genomics Proteomics. 2011 Mar;6(1):31-8 - PubMed
  11. J Hum Nutr Diet. 2007 Jun;20(3):275-85 - PubMed
  12. Prev Med. 1999 May;28(5):520-9 - PubMed
  13. Biotechnol Adv. 2011 Jan-Feb;29(1):24-7 - PubMed
  14. J Anim Sci. 2009 Oct;87(10):3226-34 - PubMed
  15. Nature. 1957 Jun 29;179(4574):1345 - PubMed
  16. J Nutr. 2008 Dec;138(12):2510-4 - PubMed
  17. Ann Intern Med. 1999 Apr 6;130(7):554-62 - PubMed
  18. J Agric Food Chem. 2004 Mar 10;52(5):1196-200 - PubMed
  19. Comp Biochem Physiol A Mol Integr Physiol. 2011 Jan;158(1):79-86 - PubMed
  20. PLoS One. 2014 Jan 31;9(1):e87726 - PubMed
  21. Am J Clin Nutr. 1997 Sep;66(3):649-59 - PubMed
  22. PLoS One. 2013 Aug 19;8(8):e71843 - PubMed
  23. Fish Shellfish Immunol. 2013 Sep;35(3):883-9 - PubMed
  24. Lancet. 1989 Sep 30;2(8666):757-61 - PubMed
  25. Mol Cell. 2013 Jun 6;50(5):686-98 - PubMed
  26. Circulation. 1996 Nov 1;94(9):2337-40 - PubMed
  27. Am J Psychiatry. 2006 Jun;163(6):1098-100 - PubMed
  28. Bioresour Technol. 2013 Dec;150:513-22 - PubMed
  29. J Cardiovasc Risk. 1997 Jun;4(3):191-9 - PubMed
  30. Can J Biochem Physiol. 1959 Aug;37(8):911-7 - PubMed
  31. Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15103-10 - PubMed
  32. Nature. 2002 Aug 8;418(6898):689-95 - PubMed
  33. Comp Biochem Physiol A Mol Integr Physiol. 2007 Oct;148(2):382-92 - PubMed
  34. Biotechnol Adv. 2013 Dec;31(8):1532-42 - PubMed
  35. Fish Shellfish Immunol. 2011 Dec;31(6):1072-80 - PubMed
  36. Fish Shellfish Immunol. 2011 Nov;31(5):616-26 - PubMed
  37. J Hum Nutr Diet. 2003 Apr;16(2):97-109 - PubMed
  38. J Nutr. 1996 Jan;126(1):34-42 - PubMed
  39. Appl Microbiol Biotechnol. 2010 Aug;87(5):1649-56 - PubMed
  40. Arterioscler Thromb Vasc Biol. 1997 Feb;17(2):279-86 - PubMed
  41. Circulation. 2000 Sep 12;102(11):1264-9 - PubMed
  42. Ann Intern Med. 2013 Apr 2;158(7):515-25 - PubMed
  43. J Exp Biol. 2005 Mar;208(Pt 6):1011-7 - PubMed
  44. J Fish Dis. 2012 Aug;35(8):591-602 - PubMed
  45. Anal Biochem. 1993 Jun;211(2):279-87 - PubMed

Publication Types