Display options
Share it on

Interface Focus. 2015 Aug 06;5(4):20150005. doi: 10.1098/rsfs.2015.0005.

Interference lithographic nanopatterning of plant and bacterial light-harvesting complexes on gold substrates.

Interface focus

Samson Patole, Cvetelin Vasilev, Osama El-Zubir, Lin Wang, Matthew P Johnson, Ashley J Cadby, Graham J Leggett, C Neil Hunter

Affiliations

  1. Department of Chemistry , University of Sheffield , Brook Hill, Sheffield S3 7HF , UK ; Department of Molecular Biology and Biotechnology , University of Sheffield , Western Bank, Sheffield S10 2TN , UK.
  2. Department of Molecular Biology and Biotechnology , University of Sheffield , Western Bank, Sheffield S10 2TN , UK.
  3. Department of Chemistry , University of Sheffield , Brook Hill, Sheffield S3 7HF , UK.
  4. Department of Molecular Biology and Biotechnology , University of Sheffield , Western Bank, Sheffield S10 2TN , UK ; Department of Physics and Astronomy , University of Sheffield , Hicks Building, Hounsfield Road, Sheffield S3 7RH , UK.
  5. Department of Physics and Astronomy , University of Sheffield , Hicks Building, Hounsfield Road, Sheffield S3 7RH , UK.

PMID: 26464784 PMCID: PMC4590419 DOI: 10.1098/rsfs.2015.0005

Abstract

We describe a facile approach for nanopatterning of photosynthetic light-harvesting complexes over macroscopic areas, and use optical spectroscopy to demonstrate retention of native properties by both site-specifically and non-specifically attached photosynthetic membrane proteins. A Lloyd's mirror dual-beam interferometer was used to expose self-assembled monolayers of amine-terminated alkylthiolates on gold to laser irradiation. Following exposure, photo-oxidized adsorbates were replaced by oligo(ethylene glycol) terminated thiols, and the remaining intact amine-functionalized regions were used for attachment of the major light-harvesting chlorophyll-protein complex from plants, LHCII. These amine patterns could be derivatized with nitrilotriacetic acid (NTA), so that polyhistidine-tagged bacteriochlorophyll-protein complexes from phototrophic bacteria could be attached with a defined surface orientation. By varying parameters such as the angle between the interfering beams and the laser irradiation dose, it was possible to vary the period and widths of NTA and amine-functionalized lines on the surfaces; periods varied from 1200 to 240 nm and linewidths as small as 60 nm (λ/4) were achieved. This level of control over the surface chemistry was reflected in the surface topology of the protein nanostructures imaged by atomic force microscopy; fluorescence imaging and spectral measurements demonstrated that the surface-attached proteins had retained their native functionality.

Keywords: antenna; interferometric lithography; light-harvesting complex; nanofabrication; photosynthesis; self-assembled monolayers

References

  1. Science. 1999 Jan 29;283(5402):661-3 - PubMed
  2. Small. 2007 Sep;3(9):1584-92 - PubMed
  3. Nat Nanotechnol. 2007 Mar;2(3):145-55 - PubMed
  4. J Am Chem Soc. 2002 Mar 20;124(11):2414-5 - PubMed
  5. Q Rev Biophys. 2002 Feb;35(1):1-62 - PubMed
  6. Langmuir. 2008 Sep 2;24(17):9661-7 - PubMed
  7. Langmuir. 2011 Feb 1;27(3):1092-9 - PubMed
  8. Biochemistry. 2002 Jul 9;41(27):8698-707 - PubMed
  9. Biochim Biophys Acta. 2012 Jan;1817(1):167-81 - PubMed
  10. Nanoscale. 2011 Jun;3(6):2511-6 - PubMed
  11. Angew Chem Int Ed Engl. 2006 Nov 6;45(43):7220-3 - PubMed
  12. Science. 2001 Sep 14;293(5537):2101-5 - PubMed
  13. Science. 2002 Mar 1;295(5560):1702-5 - PubMed
  14. Anal Bioanal Chem. 2009 Mar;393(5):1407-16 - PubMed
  15. EMBO J. 2005 Mar 9;24(5):919-28 - PubMed
  16. Photochem Photobiol. 2011 Sep-Oct;87(5):1050-7 - PubMed
  17. Photosynth Res. 2005;85(1):101-14 - PubMed
  18. Langmuir. 2014 Jul 22;30(28):8481-90 - PubMed
  19. Nano Lett. 2010 Nov 10;10(11):4375-80 - PubMed
  20. Langmuir. 2010 Nov 16;26(22):17315-21 - PubMed
  21. Nature. 2004 Mar 18;428(6980):287-92 - PubMed
  22. Annu Rev Med. 2008;59:113-29 - PubMed
  23. ACS Appl Mater Interfaces. 2009 May;1(5):1076-85 - PubMed
  24. Science. 1999 Mar 5;283(5407):1488-93 - PubMed
  25. Nanotechnology. 2008 Jan 16;19(2):025101 - PubMed
  26. Langmuir. 2011 Aug 16;27(16):10282-94 - PubMed
  27. J Biol Chem. 2004 Jan 16;279(3):2063-8 - PubMed
  28. Biomacromolecules. 2012 Feb 13;13(2):432-8 - PubMed
  29. J Am Chem Soc. 2003 May 14;125(19):5588-9 - PubMed
  30. Langmuir. 2010 Aug 17;26(16):13600-6 - PubMed
  31. J Am Chem Soc. 2007 Nov 28;129(47):14625-31 - PubMed
  32. Biochim Biophys Acta. 2005 Jan 7;1706(1-2):12-39 - PubMed
  33. J Am Chem Soc. 2008 Jul 16;130(28):8892-3 - PubMed
  34. Biochim Biophys Acta. 2010 Mar;1798(3):637-45 - PubMed
  35. Angew Chem Int Ed Engl. 2009;48(41):7626-9 - PubMed
  36. Biophys J. 2010 Jun 16;98(12):3093-101 - PubMed
  37. Chemistry. 2005 Sep 5;11(18):5249-59 - PubMed
  38. Biochemistry. 2013 Oct 29;52(43):7575-85 - PubMed
  39. Nano Lett. 2010 Apr 14;10(4):1450-7 - PubMed

Publication Types

Grant support