Display options
Share it on

Front Microbiol. 2015 Nov 04;6:1191. doi: 10.3389/fmicb.2015.01191. eCollection 2015.

Whole genome investigation of a divergent clade of the pathogen Streptococcus suis.

Frontiers in microbiology

Abiyad Baig, Lucy A Weinert, Sarah E Peters, Kate J Howell, Roy R Chaudhuri, Jinhong Wang, Matthew T G Holden, Julian Parkhill, Paul R Langford, Andrew N Rycroft, Brendan W Wren, Alexander W Tucker, Duncan J Maskell

Affiliations

  1. Department of Veterinary Medicine, University of Cambridge Cambridge, UK.
  2. Department of Paediatrics, University of Cambridge Cambridge, UK.
  3. Department of Molecular Biology and Biotechnology, University of Sheffield Sheffield, UK.
  4. School of Medicine, University of St Andrews St Andrews, UK.
  5. The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus Cambridge, UK.
  6. Section of Paediatrics, Department of Medicine, Imperial College London London, UK.
  7. Royal Veterinary College Hatfield, UK.
  8. Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London, UK.

PMID: 26583006 PMCID: PMC4631834 DOI: 10.3389/fmicb.2015.01191

Abstract

Streptococcus suis is a major porcine and zoonotic pathogen responsible for significant economic losses in the pig industry and an increasing number of human cases. Multiple isolates of S. suis show marked genomic diversity. Here, we report the analysis of whole genome sequences of nine pig isolates that caused disease typical of S. suis and had phenotypic characteristics of S. suis, but their genomes were divergent from those of many other S. suis isolates. Comparison of protein sequences predicted from divergent genomes with those from normal S. suis reduced the size of core genome from 793 to only 397 genes. Divergence was clear if phylogenetic analysis was performed on reduced core genes and MLST alleles. Phylogenies based on certain other genes (16S rRNA, sodA, recN, and cpn60) did not show divergence for all isolates, suggesting recombination between some divergent isolates with normal S. suis for these genes. Indeed, there is evidence of recent recombination between the divergent and normal S. suis genomes for 249 of 397 core genes. In addition, phylogenetic analysis based on the 16S rRNA gene and 132 genes that were conserved between the divergent isolates and representatives of the broader Streptococcus genus showed that divergent isolates were more closely related to S. suis. Six out of nine divergent isolates possessed a S. suis-like capsule region with variation in capsular gene sequences but the remaining three did not have a discrete capsule locus. The majority (40/70), of virulence-associated genes in normal S. suis were present in the divergent genomes. Overall, the divergent isolates extend the current diversity of S. suis species but the phenotypic similarities and the large amount of gene exchange with normal S. suis gives insufficient evidence to assign these isolates to a new species or subspecies. Further, sampling and whole genome analysis of more isolates is warranted to understand the diversity of the species.

Keywords: MLST; Streptococcus suis; capsule; divergent; genome; phylogeny; recombination; virulence

References

  1. Bioinformatics. 2006 Nov 1;22(21):2688-90 - PubMed
  2. Appl Environ Microbiol. 2001 Oct;67(10):4828-33 - PubMed
  3. Genome Biol. 2006;7(9):116 - PubMed
  4. Int J Syst Bacteriol. 1998 Apr;48 Pt 2:581-9 - PubMed
  5. J Clin Microbiol. 2012 Oct;50(10):3329-34 - PubMed
  6. Int J Syst Evol Microbiol. 2010 Sep;60(Pt 9):2140-8 - PubMed
  7. J Clin Microbiol. 2013 Aug;51(8):2582-91 - PubMed
  8. Bioinformatics. 2011 Apr 1;27(7):1009-10 - PubMed
  9. J Clin Microbiol. 2002 Oct;40(10):3671-80 - PubMed
  10. Emerg Microbes Infect. 2014 Jun;3(6):e45 - PubMed
  11. Future Microbiol. 2012 Feb;7(2):259-79 - PubMed
  12. Vet Microbiol. 2005 Apr 25;107(1-2):63-9 - PubMed
  13. Bioinformatics. 2009 Aug 15;25(16):2078-9 - PubMed
  14. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 - PubMed
  15. Curr Protoc Bioinformatics. 2011 Sep;Chapter 6:Unit 6.12.1-19 - PubMed
  16. BMC Bioinformatics. 2010 Mar 08;11:119 - PubMed
  17. Clin Infect Dis. 2009 Mar 1;48(5):617-25 - PubMed
  18. Can Vet J. 2008 May;49(5):461-2 - PubMed
  19. Int J Syst Evol Microbiol. 2000 Jan;50 Pt 1:55-61 - PubMed
  20. Appl Environ Microbiol. 2013 Apr;79(8):2796-806 - PubMed
  21. Mol Biol Evol. 2009 Jul;26(7):1641-50 - PubMed
  22. Can J Vet Res. 1990 Jan;54(1):170-3 - PubMed
  23. Genome Res. 2011 Jun;21(6):936-9 - PubMed
  24. Anim Health Res Rev. 2007 Jun;8(1):29-45 - PubMed
  25. Nat Commun. 2015 Mar 31;6:6740 - PubMed
  26. J Microbiol Methods. 2014 Dec;107:66-70 - PubMed
  27. Vet Microbiol. 2013 Mar 23;162(2-4):842-9 - PubMed
  28. Science. 2009 Jun 12;324(5933):1454-7 - PubMed
  29. Int J Syst Evol Microbiol. 2009 Sep;59(Pt 9):2317-22 - PubMed
  30. Syst Biol. 2008 Oct;57(5):758-71 - PubMed
  31. Int J Syst Evol Microbiol. 2015 Feb;65(Pt 2):438-43 - PubMed
  32. PLoS One. 2014 Jun 30;9(6):e101229 - PubMed
  33. J Vet Diagn Invest. 1990 Jul;2(3):249-52 - PubMed
  34. Vet Microbiol. 2013 Mar 23;162(2-4):819-25 - PubMed

Publication Types

Grant support