Display options
Share it on

Front Microbiol. 2015 Nov 04;6:1218. doi: 10.3389/fmicb.2015.01218. eCollection 2015.

Exposure to pairs of Aeromonas strains enhances virulence in the Caenorhabditis elegans infection model.

Frontiers in microbiology

Thomas Mosser, Emilie Talagrand-Reboul, Sophie M Colston, Joerg Graf, Maria J Figueras, Estelle Jumas-Bilak, Brigitte Lamy

Affiliations

  1. Laboratoire de Bactériologie-Virologie, Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HydroSciences Montpellier, Université de Montpellier Montpellier, France.
  2. Laboratoire de Bactériologie-Virologie, Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HydroSciences Montpellier, Université de Montpellier Montpellier, France ; Département d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire de Montpellier Montpellier, France.
  3. Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA.
  4. Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA ; Institute for Systems Genomics, University of Connecticut Storrs, CT, USA.
  5. Unidad de Microbiología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili Reus, Spain.
  6. Laboratoire de Bactériologie-Virologie, Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HydroSciences Montpellier, Université de Montpellier Montpellier, France ; Laboratoire de Bactériologie, Centre Hospitalier Régional Universitaire de Montpellier Montpellier, France.

PMID: 26583012 PMCID: PMC4631986 DOI: 10.3389/fmicb.2015.01218

Abstract

Aeromonad virulence remains poorly understood, and is difficult to predict from strain characteristics. In addition, infections are often polymicrobial (i.e., are mixed infections), and 5-10% of such infections include two distinct aeromonads, which has an unknown impact on virulence. In this work, we studied the virulence of aeromonads recovered from human mixed infections. We tested them individually and in association with other strains with the aim of improving our understanding of aeromonosis. Twelve strains that were recovered in pairs from six mixed infections were tested in a virulence model of the worm Caenorhabditis elegans. Nine isolates were weak worm killers (median time to death, TD50, ≥7 days) when administered alone. Two pairs showed enhanced virulence, as indicated by a significantly shortened TD50 after co-infection vs. infection with a single strain. Enhanced virulence was also observed for five of the 14 additional experimental pairs, and each of these pairs included one strain from a natural synergistic pair. These experiments indicated that synergistic effects were frequent and were limited to pairs that were composed of strains belonging to different species. The genome content of virulence-associated genes failed to explain virulence synergy, although some virulence-associated genes that were present in some strains were absent from their companion strain (e.g., T3SS). The synergy observed in virulence when two Aeromonas isolates were co-infected stresses the idea that consideration should be given to the fact that infection does not depend only on single strain virulence but is instead the result of a more complex interaction between the microbes involved, the host and the environment. These results are of interest for other diseases in which mixed infections are likely and in particular for water-borne diseases (e.g., legionellosis, vibriosis), in which pathogens may display enhanced virulence in the presence of the right partner. This study contributes to the current shift in infectiology paradigms from a premise that assumes a monomicrobial origin for infection to one more in line with the current pathobiome era.

Keywords: Aeromonas; Caenorhabditis elegans; mixed infection; polymicrobial infection; virulence determinants

References

  1. FEMS Immunol Med Microbiol. 2002 Feb 18;32(3):237-42 - PubMed
  2. J Clin Microbiol. 1991 Mar;29(3):565-9 - PubMed
  3. BMC Microbiol. 2012 Apr 30;12:62 - PubMed
  4. Infect Immun. 2002 Aug;70(8):4705-7 - PubMed
  5. Curr Top Microbiol Immunol. 2013;358:215-43 - PubMed
  6. MBio. 2013 Apr 23;4(2):e00064-13 - PubMed
  7. MBio. 2010 Jul 06;1(3):null - PubMed
  8. Q Rev Biol. 1996 Mar;71(1):37-78 - PubMed
  9. Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14 - PubMed
  10. Clin Microbiol Rev. 2012 Jan;25(1):193-213 - PubMed
  11. J Clin Microbiol. 1979 Jul;10(1):46-9 - PubMed
  12. Int J Syst Evol Microbiol. 2003 May;53(Pt 3):875-83 - PubMed
  13. Int J Syst Evol Microbiol. 2004 Jul;54(Pt 4):1393-9 - PubMed
  14. MBio. 2014 Nov 18;5(6):e02136 - PubMed
  15. PLoS Pathog. 2011 Mar;7(3):e1002012 - PubMed
  16. Trends Microbiol. 2005 Mar;13(3):119-27 - PubMed
  17. Infect Immun. 2014 Mar;82(3):1045-51 - PubMed
  18. Infect Immun. 2006 Mar;74(3):1505-15 - PubMed
  19. J Clin Microbiol. 2009 Apr;47(4):1234-7 - PubMed
  20. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5509-13 - PubMed
  21. Int J Med Microbiol. 2014 May;304(3-4):307-13 - PubMed
  22. Front Cell Infect Microbiol. 2014 Mar 05;4:29 - PubMed
  23. Trends Microbiol. 2010 Oct;18(10):448-54 - PubMed
  24. PLoS One. 2008;3(10):e3370 - PubMed
  25. Annu Rev Microbiol. 2013;67:161-78 - PubMed
  26. Appl Environ Microbiol. 2009 Oct;75(19):6382-92 - PubMed
  27. Proc Biol Sci. 2003 Jan 7;270(1510):37-44 - PubMed
  28. J Clin Microbiol. 2000 Oct;38(10):3785-90 - PubMed
  29. Trends Microbiol. 2000 May;8(5):226-31 - PubMed
  30. Appl Environ Microbiol. 2007 Mar;73(6):1984-91 - PubMed
  31. Clin Microbiol Rev. 2010 Jan;23(1):35-73 - PubMed
  32. Clin Microbiol Infect. 2014 Jul;20(7):O428-34 - PubMed
  33. J Bacteriol. 2006 Dec;188(23):8272-82 - PubMed
  34. J Clin Microbiol. 2011 Mar;49(3):1169-70 - PubMed
  35. PLoS One. 2012;7(2):e30070 - PubMed
  36. EMBO J. 2003 Apr 1;22(7):1451-60 - PubMed
  37. J Invest Dermatol. 2011 Feb;131(2):401-9 - PubMed
  38. Clin Infect Dis. 1998 Aug;27(2):332-44 - PubMed
  39. Microbes Infect. 2007 Feb;9(2):214-23 - PubMed
  40. Appl Environ Microbiol. 2013 Apr;79(7):2435-45 - PubMed
  41. Antonie Van Leeuwenhoek. 2003;84(4):269-78 - PubMed
  42. Dis Aquat Organ. 1998 Feb 26;32(1):49-69 - PubMed
  43. Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):1059-64 - PubMed
  44. Appl Environ Microbiol. 2014 Jul;80(14):4162-83 - PubMed
  45. Nature. 2007 Nov 15;450(7168):411-4 - PubMed
  46. Dev Comp Immunol. 2010 Jun;34(6):690-8 - PubMed

Publication Types

Grant support