Display options
Share it on

Elife. 2015 Nov 19;4. doi: 10.7554/eLife.08419.

CryoEM and computer simulations reveal a novel kinase conformational switch in bacterial chemotaxis signaling.

eLife

C Keith Cassidy, Benjamin A Himes, Frances J Alvarez, Jun Ma, Gongpu Zhao, Juan R Perilla, Klaus Schulten, Peijun Zhang

Affiliations

  1. Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, United States.
  2. Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States.

PMID: 26583751 PMCID: PMC6746300 DOI: 10.7554/eLife.08419

Abstract

Chemotactic responses in bacteria require large, highly ordered arrays of sensory proteins to mediate the signal transduction that ultimately controls cell motility. A mechanistic understanding of the molecular events underlying signaling, however, has been hampered by the lack of a high-resolution structural description of the extended array. Here, we report a novel reconstitution of the array, involving the receptor signaling domain, histidine kinase CheA, and adaptor protein CheW, as well as a density map of the core-signaling unit at 11.3 Å resolution, obtained by cryo-electron tomography and sub-tomogram averaging. Extracting key structural constraints from our density map, we computationally construct and refine an atomic model of the core array structure, exposing novel interfaces between the component proteins. Using all-atom molecular dynamics simulations, we further reveal a distinctive conformational change in CheA. Mutagenesis and chemical cross-linking experiments confirm the importance of the conformational dynamics of CheA for chemotactic function.

Keywords: E. coli; biophysics; computational biology; structural biology; systems biology

References

  1. Biochemistry. 2009 Jul 28;48(29):6975-87 - PubMed
  2. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4964-8 - PubMed
  3. EMBO J. 2010 Aug 18;29(16):2724-33 - PubMed
  4. Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9390-5 - PubMed
  5. Mol Microbiol. 2011 Feb;79(3):677-85 - PubMed
  6. J Struct Biol. 2007 Dec;160(3):305-12 - PubMed
  7. Biochemistry. 2003 Nov 25;42(46):13379-85 - PubMed
  8. J Comput Chem. 2011 Jul 30;32(10):2319-27 - PubMed
  9. Annu Rev Microbiol. 2012;66:325-47 - PubMed
  10. Biochemistry. 2014 Mar 18;53(10):1575-85 - PubMed
  11. Biochemistry. 2014 Feb 11;53(5):855-61 - PubMed
  12. Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):15940-5 - PubMed
  13. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 - PubMed
  14. J Comput Chem. 2004 Aug;25(11):1400-15 - PubMed
  15. J Mol Biol. 1993 Dec 5;234(3):779-815 - PubMed
  16. J Struct Biol. 1999 Dec 1;128(1):75-81 - PubMed
  17. J Bacteriol. 2006 Jun;188(12):4321-30 - PubMed
  18. Langmuir. 2007 Mar 13;23(6):3280-9 - PubMed
  19. Biochemistry. 2010 May 11;49(18):3824-41 - PubMed
  20. Biochem Biophys Res Commun. 2007 Sep 7;360(4):863-7 - PubMed
  21. Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):E1481-8 - PubMed
  22. PLoS Comput Biol. 2013;9(11):e1003337 - PubMed
  23. Trends Biochem Sci. 2008 Jan;33(1):9-19 - PubMed
  24. Biophys Rev. 2010 Feb;2(1):21-27 - PubMed
  25. J Mol Biol. 2012 Sep 14;422(2):282-90 - PubMed
  26. Curr Opin Struct Biol. 2015 Apr;31:64-74 - PubMed
  27. J Comput Chem. 2005 Dec;26(16):1781-802 - PubMed
  28. Biochemistry. 2014 Sep 9;53(35):5592-600 - PubMed
  29. J Phys Chem B. 1998 Apr 30;102(18):3586-616 - PubMed
  30. Structure. 2014 Dec 2;22(12):1875-1882 - PubMed
  31. Nat Commun. 2013;4:2881 - PubMed
  32. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8703-7 - PubMed
  33. Biochemistry. 2013 Jun 4;52(22):3852-65 - PubMed
  34. Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3777-81 - PubMed
  35. Mol Biosyst. 2009 Dec;5(12):1853-9 - PubMed
  36. Biochemistry. 2006 Jul 25;45(29):8699-711 - PubMed
  37. Nat Rev Mol Cell Biol. 2004 Dec;5(12):1024-37 - PubMed
  38. J Mol Biol. 2012 Jan 27;415(4):759-67 - PubMed
  39. J Struct Biol. 2015 May;190(2):215-23 - PubMed
  40. Elife. 2014 Mar 25;3:e02151 - PubMed
  41. J Bacteriol. 2010 Mar;192(5):1193-200 - PubMed
  42. Annu Rev Biophys. 2013;42:337-59 - PubMed
  43. Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17181-6 - PubMed
  44. Nature. 1999 Aug 19;400(6746):787-92 - PubMed
  45. Ultramicroscopy. 2006 May;106(7):587-96 - PubMed
  46. Nat Struct Mol Biol. 2006 May;13(5):400-7 - PubMed
  47. Biochemistry. 2013 Nov 5;52(44):7753-65 - PubMed
  48. Nat Struct Biol. 2002 Feb;9(2):121-5 - PubMed
  49. Microbiol Mol Biol Rev. 2004 Jun;68(2):301-19 - PubMed
  50. Curr Opin Struct Biol. 2014 Dec;29:85-94 - PubMed
  51. Structure. 2008 May;16(5):673-83 - PubMed
  52. Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3766-71 - PubMed
  53. Cell. 1999 Jan 8;96(1):131-41 - PubMed
  54. Biochemistry. 2013 Jun 4;52(22):3866-80 - PubMed
  55. J Struct Biol. 1996 Jan-Feb;116(1):71-6 - PubMed
  56. Curr Opin Microbiol. 2010 Apr;13(2):124-32 - PubMed
  57. Trends Microbiol. 2015 May;23(5):257-66 - PubMed
  58. J Struct Biol. 2007 Jan;157(1):126-37 - PubMed
  59. Nature. 1998 May 7;393(6680):85-8 - PubMed
  60. Mol Microbiol. 2013 Sep;89(5):831-41 - PubMed

Publication Types

Grant support