Display options
Share it on

Iran J Basic Med Sci. 2015 Aug;18(8):799-804.

Estrogen treatment enhances neurogenic differentiation of human adipose derived stem cells in vitro.

Iranian journal of basic medical sciences

Shahnaz Razavi, Mohamad Reza Razavi, Nafiseh Ahmadi, Mohammad Kazemi

Affiliations

  1. Department of Anatomical Sciences and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
  2. Molecular Parasitology Laboratory, Pasteur Institute of Iran, Tehran, Iran.
  3. Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran.
  4. Department of Genetic, Isfahan University of Medical Sciences, Isfahan, Iran.

PMID: 26557969 PMCID: PMC4633463

Abstract

OBJECTIVES: Estrogen is a sexual hormone that has prominent effects on reproductive and non-reproductive tissues. The aim of this study is to evaluate the effects of estrogen on the proliferation and neural differentiation of human adipose derived stem cells (ADSCs) during neurogenic differentiation.

MATERIALS AND METHODS: Isolated human ADSCs were trans-differentiated in neural induction medium containing neurobasal medium, N2 and B27 with or without 17β-estradiol (E2) treatment. Proliferation rate and neural differentiation of human ADSCs were assessed using MTT assay, immunostaining and real time RT- PCR analysis, respectively.

RESULTS: Analysis of data show that estradiol treatment can significantly increase proliferation rate of differentiated cells (P<0.05). Immunocytochemical and real time RT-PCR analysis revealed that the expression of precursor and mature neuronal markers (nestin and MAP2) was significantly higher in the E2 treated cell cultures when compared to the untreated cell cultures (P<0.05).

CONCLUSION: According to our findings, estrogen can promote proliferation and neuronal differentiation of human ADSCs.

Keywords: 17β-estradiol; Adipose derived stem cells; Cell proliferation; Neurogenic differentiation

References

  1. Neuroreport. 2007 Jan 8;18(1):35-8 - PubMed
  2. Circulation. 2004 Mar 16;109(10):1292-8 - PubMed
  3. Stem Cells. 2006 May;24(5):1294-301 - PubMed
  4. Mol Biol Cell. 2002 Dec;13(12):4279-95 - PubMed
  5. Science. 1988 May 13;240(4854):889-95 - PubMed
  6. Endocrinology. 2000 May;141(5):1839-45 - PubMed
  7. Physiol Rev. 2001 Oct;81(4):1535-65 - PubMed
  8. Steroids. 2007 May;72(5):381-405 - PubMed
  9. Cell Death Differ. 2005 Oct;12(10):1329-43 - PubMed
  10. J Cereb Blood Flow Metab. 2000 Apr;20(4):631-52 - PubMed
  11. Am J Med. 1994 Jul;97(1):66-77 - PubMed
  12. Exp Neurol. 2003 Oct;183(2):355-66 - PubMed
  13. Science. 1997 Sep 5;277(5331):1508-10 - PubMed
  14. Neuroscience. 1994 Jun;60(4):843-55 - PubMed
  15. Endocrinology. 2002 Aug;143(8):3175-8 - PubMed
  16. Tissue Eng. 2001 Apr;7(2):211-28 - PubMed
  17. Cell Mol Neurobiol. 2013 Mar;33(2):283-9 - PubMed
  18. J Comp Neurol. 2007 Feb 20;500(6):1064-75 - PubMed
  19. Prog Neurobiol. 2001 Jan;63(1):29-60 - PubMed
  20. Endocrine. 2006 Apr;29(2):209-15 - PubMed
  21. Prog Neurobiol. 2003 Sep;71(1):31-41 - PubMed
  22. Dev Growth Differ. 2013 Aug;55(6):648-55 - PubMed
  23. Stem Cells Dev. 2006 Aug;15(4):583-94 - PubMed
  24. Mol Cell Neurosci. 2002 Nov;21(3):512-20 - PubMed
  25. Circulation. 2006 Nov 21;114(21):2261-70 - PubMed
  26. J Neurosci. 2003 Jun 15;23(12):4984-95 - PubMed
  27. Neurology. 1997 May;48(5 Suppl 7):S8-15 - PubMed
  28. Biomed Res. 2008 Jun;29(3):163-70 - PubMed
  29. Mol Cells. 2004 Dec 31;18(3):320-5 - PubMed
  30. Neurosci Lett. 2000 Mar 3;281(1):57-60 - PubMed
  31. J Neurosci Res. 2001 Sep 1;65(5):396-402 - PubMed
  32. Biochem Biophys Res Commun. 2013 Oct 25;440(3):381-7 - PubMed
  33. Neuroreport. 2004 Dec 3;15(17):2659-63 - PubMed
  34. Endocrinology. 1995 May;136(5):2320-4 - PubMed
  35. Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10905-10 - PubMed
  36. Neurosci Lett. 2009 Oct 2;462(1):76-9 - PubMed

Publication Types