Display options
Share it on

Biol Sex Differ. 2015 Nov 09;6:23. doi: 10.1186/s13293-015-0042-x. eCollection 2015.

Sexual dimorphism in the hypophysiotropic tyrosine hydroxylase-positive neurons in the preoptic area of the teleost, Clarias batrachus.

Biology of sex differences

Soham Saha, Saurabh Patil, Uday Singh, Omprakash Singh, Praful S Singru

Affiliations

  1. School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751 005 Odisha India ; Present address: Institut Pasteur, Affiliated to: Ecole des neurosciences Paris (ENP) Graduate program, 28, rue du docteur Roux, 75724 Paris, Cedex 15 France.
  2. School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751 005 Odisha India.

PMID: 26557978 PMCID: PMC4640419 DOI: 10.1186/s13293-015-0042-x

Abstract

BACKGROUND: Dopamine (DA) neurons in the anteroventral periventricular nucleus (AVPV) in the preoptic area (POA) of mammals express estrogen receptors, regulate luteinizing hormone (LH) secretion, and show distinct sexual dimorphism. In teleosts, hypophysiotropic DA neurons of the nucleus preopticus periventricularis (NPP), located in the anteroventral POA, express estrogen receptors, innervate LH cells, and emerged as a neuroanatomical substrate for inhibiting LH cells. Interestingly, the NPP and AVPV seem to share several similarities. Whether DAergic neurons in the NPP show sexual dimorphism is, however, not known. Based on the proposed homology to AVPV and previous studies showing greater tyrosine hydroxylase (TH) mRNA and enzyme activity levels in the brain of female catfish, we hypothesize that females have greater number of DAergic neurons in the NPP and correspondingly more TH-immunoreactive fiber innervation of the pituitary.

METHODS: Adult, male and female Clarias batrachus collected during the prespawning phase of their reproductive cycle were used. Fish were anesthetized and perfused transcardially with phosphate-buffered saline (pH 7.4) and 4 % paraformaldehyde in phosphate buffer. Sections through the rostro-caudal extent of the POA and pituitary were processed for TH immunofluorescence. Using double immunofluorescence, the association between TH-immunoreactive fibers and LH cells in the pituitary was explored. Sections were analyzed using semiquantitative analysis.

RESULTS: NPP in POA of C. batrachus has two distinct subdivisions, viz, anterior (NPPa) and posterior (NPPp), and TH neurons were observed in both the subdivisions. Compared to that in the males, a significantly higher (P < 0.05) number of TH neurons was consistently observed in the NPPa of females. TH neurons in NPPp, however, showed no difference in the number or immunoreactivity. Since DA neurons in NPPa are hypophysiotropic, we compared TH-fiber innervation of the pituitary in both sexes. Compared to males, proximal pars distalis and LH cells in this region of the pituitary in females were densely innervated by TH fibers.

CONCLUSIONS: Neurons of NPPa and their innervation to the pituitary seem to be a distinct sexually dimorphic DAergic system in C. batrachus. The DAergic system may serve as a component of the neural mechanisms controlling the sexually dimorphic LH surge in teleosts. Given the similarities shared by NPPa and AVPV, homology between these two nuclei is suggested.

Keywords: Dopamine; Nucleus preopticus periventricularis (NPP); Pituitary; Preoptic area; Reproduction; Sexual dimorphism; Teleosts

References

  1. Brain Res. 1985 Mar 18;330(1):55-64 - PubMed
  2. Gen Comp Endocrinol. 1987 Sep;67(3):303-10 - PubMed
  3. Cell Tissue Res. 1993;273(2):345-55 - PubMed
  4. Neuroendocrinology. 1990 Jun;51(6):664-74 - PubMed
  5. Endocrinology. 2006 Jun;147(6):2964-73 - PubMed
  6. Neuroendocrinology. 1987 Jun;45(6):451-8 - PubMed
  7. Endocrinology. 2011 Apr;152(4):1527-40 - PubMed
  8. J Neuroendocrinol. 2012 Nov;24(11):1398-411 - PubMed
  9. Gen Comp Endocrinol. 2014 Feb 1;197:18-25 - PubMed
  10. Neuroendocrinology. 1982 Jun;34(6):395-404 - PubMed
  11. Brain Res Brain Res Rev. 2000 Sep;33(2-3):308-79 - PubMed
  12. Gen Comp Endocrinol. 2003 Jan;130(1):29-40 - PubMed
  13. J Comp Neurol. 1990 Feb 1;292(1):127-62 - PubMed
  14. Brain Res. 1987 Jan 1;400(1):11-34 - PubMed
  15. Fish Physiol Biochem. 1993 Jul;11(1-6):85-98 - PubMed
  16. Gen Comp Endocrinol. 1979 Feb;37(2):246-9 - PubMed
  17. Front Endocrinol (Lausanne). 2013 Mar 08;4:24 - PubMed
  18. Front Neurosci. 2011 Dec 19;5:137 - PubMed
  19. Endocrinology. 2013 Aug;154(8):2821-32 - PubMed
  20. Brain Behav Evol. 1993;42(1):24-38 - PubMed
  21. Rev Reprod. 1997 Jan;2(1):55-68 - PubMed
  22. Biol Reprod. 2004 Nov;71(5):1491-500 - PubMed
  23. Physiol Behav. 2008 Sep 3;95(1-2):36-47 - PubMed
  24. J Hirnforsch. 1991;32(3):289-308 - PubMed
  25. Brain Res Mol Brain Res. 1989 Dec;6(4):297-310 - PubMed
  26. Gen Comp Endocrinol. 1989 Feb;73(2):270-83 - PubMed
  27. J Comp Neurol. 2011 Dec 15;519(18):3748-65 - PubMed
  28. Mol Cell Neurosci. 2010 Apr;43(4):394-402 - PubMed
  29. J Comp Neurol. 2007 May 10;502(2):215-35 - PubMed
  30. Gen Comp Endocrinol. 2010 Feb 1;165(3):438-55 - PubMed
  31. J Comp Neurol. 2007 Oct 10;504(5):450-69 - PubMed
  32. Brain Res Mol Brain Res. 2005 Nov 18;141(1):1-9 - PubMed
  33. J Comp Neurol. 2010 Feb 15;518(4):423-38 - PubMed
  34. J Comp Neurol. 2005 Feb 28;483(1):91-113 - PubMed
  35. Neuroscience. 2012 Aug 30;218:65-77 - PubMed
  36. Physiol Behav. 1981 Nov;27(5):855-61 - PubMed
  37. Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):3306-11 - PubMed
  38. J Neurobiol. 2005 Oct;65(1):37-49 - PubMed
  39. Endocrinology. 2005 Sep;146(9):3686-92 - PubMed
  40. J Fish Biol. 2010 Jan;76(1):129-60 - PubMed
  41. Mol Cell Endocrinol. 2013 Aug 15;375(1-2):130-9 - PubMed
  42. Acta Physiol Scand Suppl. 1964;:SUPPL 232:1-55 - PubMed
  43. Eur J Neurosci. 2010 Dec;32(12):2105-15 - PubMed
  44. Psychoneuroendocrinology. 2014 Dec;50:194-208 - PubMed
  45. PLoS One. 2015 Apr 07;10(4):e0121914 - PubMed
  46. J Neuroendocrinol. 2011 Apr;23(4):302-9 - PubMed
  47. Front Neuroanat. 2011 Mar 29;5:21 - PubMed
  48. Endocrinology. 1955 Aug;57(2):243-52 - PubMed
  49. Nat Commun. 2011 Jan 25;2:171 - PubMed
  50. Arch Ital Biol. 1998 Jan;136(1):17-44 - PubMed
  51. J Neuroendocrinol. 2015 Sep;27(9):708-17 - PubMed
  52. Gen Comp Endocrinol. 2003 Apr;131(2):126-33 - PubMed
  53. Fish Physiol Biochem. 1986 Oct;2(1-4):25-34 - PubMed
  54. Horm Behav. 2004 Dec;46(5):628-37 - PubMed
  55. BMC Neurosci. 2007 Feb 01;8:13 - PubMed
  56. J Neuroendocrinol. 2012 Jun;24(6):897-906 - PubMed
  57. Neurosci Lett. 1989 Dec 15;107(1-3):39-44 - PubMed
  58. Anat Rec. 1946 Feb;94:239-47 - PubMed
  59. J Chem Neuroanat. 1995 Feb;8(2):125-45 - PubMed
  60. J Chem Neuroanat. 2000 May;19(1):17-32 - PubMed
  61. Neuroendocrinology. 1983 May;36(5):351-7 - PubMed
  62. J Neuroendocrinol. 2014 Jun;26(6):400-11 - PubMed
  63. Front Endocrinol (Lausanne). 2012 Feb 22;3:28 - PubMed
  64. Brain Behav Evol. 1996;47(4):179-84 - PubMed
  65. Neurotoxicol Teratol. 2006 Jan-Feb;28(1):111-8 - PubMed
  66. Endocrinology. 2004 Sep;145(9):4073-7 - PubMed
  67. J Comp Neurol. 2002 Aug 5;449(4):374-89 - PubMed
  68. Gen Comp Endocrinol. 1988 Dec;72(3):431-42 - PubMed
  69. Neuroendocrinology. 1996 Feb;63(2):156-65 - PubMed
  70. Endocrinology. 2013 Feb;154(2):807-18 - PubMed
  71. Brain Behav Evol. 1994;43(2):61-78 - PubMed
  72. Front Neural Circuits. 2013 Apr 08;7:63 - PubMed
  73. Endocrinology. 2008 May;149(5):2467-76 - PubMed

Publication Types