Display options
Share it on

Front Cell Neurosci. 2015 Oct 13;9:411. doi: 10.3389/fncel.2015.00411. eCollection 2015.

Neural progenitor cells isolated from the subventricular zone present hemichannel activity and form functional gap junctions with glial cells.

Frontiers in cellular neuroscience

Rocío Talaverón, Paola Fernández, Rosalba Escamilla, Angel M Pastor, Esperanza R Matarredona, Juan C Sáez

Affiliations

  1. Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla Sevilla, Spain.
  2. Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile and Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso Chile.

PMID: 26528139 PMCID: PMC4602088 DOI: 10.3389/fncel.2015.00411

Abstract

The postnatal subventricular zone (SVZ) lining the walls of the lateral ventricles contains neural progenitor cells (NPCs) that generate new olfactory bulb interneurons. Communication via gap junctions between cells in the SVZ is involved in NPC proliferation and in neuroblast migration towards the olfactory bulb. SVZ NPCs can be expanded in vitro in the form of neurospheres that can be used for transplantation purposes after brain injury. We have previously reported that neurosphere-derived NPCs form heterocellular gap junctions with host glial cells when they are implanted after mechanical injury. To analyze functionality of NPC-glial cell gap junctions we performed dye coupling experiments in co-cultures of SVZ NPCs with astrocytes or microglia. Neurosphere-derived cells expressed mRNA for at least the hemichannel/gap junction channel proteins connexin 26 (Cx26), Cx43, Cx45 and pannexin 1 (Panx1). Dye coupling experiments revealed that gap junctional communication occurred among neurosphere cells (incidence of coupling: 100%). Moreover, hemichannel activity was also detected in neurosphere cells as evaluated in time-lapse measurements of ethidium bromide uptake. Heterocellular coupling between NPCs and glial cells was evidenced in co-cultures of neurospheres with astrocytes (incidence of coupling: 91.0 ± 4.7%) or with microglia (incidence of coupling: 71.9 ± 6.7%). Dye coupling in neurospheres and in co-cultures was inhibited by octanol, a gap junction blocker. Altogether, these results suggest the existence of functional hemichannels and gap junction channels in postnatal SVZ neurospheres. In addition, they demonstrate that SVZ-derived NPCs can establish functional gap junctions with astrocytes or microglia. Therefore, cell-cell communication via gap junctions and hemichannels with host glial cells might subserve a role in the functional integration of NPCs after implantation in the damaged brain.

Keywords: astrocytes; dye coupling; dye uptake; gap junctions; hemichannels; microglia; subventricular zone

References

  1. Dev Neurosci. 2000;22(1-2):34-43 - PubMed
  2. Biol Chem. 2002 May;383(5):725-37 - PubMed
  3. Neural Dev. 2012 Jul 04;7:11 - PubMed
  4. PLoS One. 2013;8(1):e54519 - PubMed
  5. J Comp Neurol. 2007 Sep 20;504(3):298-313 - PubMed
  6. J Neurosci Res. 2005 Nov 1;82(3):306-15 - PubMed
  7. Trends Neurosci. 2010 Feb;33(2):93-102 - PubMed
  8. Glia. 2006 Sep;54(4):329-42 - PubMed
  9. IUBMB Life. 2006 Jul;58(7):409-19 - PubMed
  10. Brain Res Bull. 2002 Apr;57(6):751-8 - PubMed
  11. J Cell Sci. 2002 Aug 15;115(Pt 16):3241-51 - PubMed
  12. Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):4190-5 - PubMed
  13. Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5184-9 - PubMed
  14. J Neurosci. 2014 Feb 5;34(6):2231-43 - PubMed
  15. Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20107-12 - PubMed
  16. Physiol Rev. 2011 Oct;91(4):1281-304 - PubMed
  17. Neuroscience. 2012 Dec 13;226:270-81 - PubMed
  18. J Neurochem. 2010 Mar;112(6):1368-85 - PubMed
  19. Cell. 1996 Feb 9;84(3):381-8 - PubMed
  20. Glia. 2014 Apr;62(4):623-38 - PubMed
  21. J Neurochem. 2005 Oct;95(2):475-83 - PubMed
  22. Science. 2000 Feb 25;287(5457):1433-8 - PubMed
  23. Nat Neurosci. 2012 Nov;15(11):1485-7 - PubMed
  24. EMBO J. 2006 Nov 1;25(21):5071-82 - PubMed
  25. Neuron. 2001 Apr;30(1):19-35 - PubMed
  26. Cell Signal. 2013 Dec;25(12):2676-84 - PubMed
  27. J Neurol Sci. 2008 Feb 15;265(1-2):102-4 - PubMed
  28. Proc Natl Acad Sci U S A. 2006 Mar 21;103(12):4475-80 - PubMed
  29. Exp Neurol. 1999 Aug;158(2):265-78 - PubMed
  30. J Neuroimmunol. 2014 Apr 15;269(1-2):90-3 - PubMed
  31. FASEB J. 2005 Sep;19(11):1516-8 - PubMed
  32. Brain Res. 1999 Jan 23;816(2):411-23 - PubMed
  33. Cell Commun Adhes. 2008 May;15(1):207-18 - PubMed
  34. Dev Neurobiol. 2009 Sep 15;69(11):715-30 - PubMed
  35. Dev Biol. 2004 Aug 1;272(1):203-16 - PubMed
  36. Eur J Neurosci. 2011 Dec;34(12):1895-905 - PubMed
  37. Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11336-41 - PubMed
  38. Exp Neurol. 1999 Mar;156(1):71-83 - PubMed
  39. Nat Rev Neurosci. 2006 May;7(5):395-406 - PubMed
  40. J Neurosci. 1997 May 1;17(9):3096-111 - PubMed
  41. Bioessays. 2009 Sep;31(9):953-74 - PubMed
  42. Eur J Biochem. 1996 May 15;238(1):1-27 - PubMed
  43. Dev Neurobiol. 2012 Dec;72(12):1482-97 - PubMed

Publication Types