Display options
Share it on

EJNMMI Res. 2015 Dec;5(1):55. doi: 10.1186/s13550-015-0132-0. Epub 2015 Oct 15.

(18F)FDG-PET brain imaging during the micturition cycle in rats detects regions involved in bladder afferent signalling.

EJNMMI research

Yves Deruyver, Roma Rietjens, Jan Franken, Silvia Pinto, Ann Van Santvoort, Cindy Casteels, Thomas Voets, Dirk De Ridder

Affiliations

  1. Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000, Leuven, Belgium. [email protected].
  2. Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium. [email protected].
  3. TRP Channel Research Platform Leuven (TRPLe), KU Leuven, Herestraat 49, 3000, Leuven, Belgium. [email protected].
  4. Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000, Leuven, Belgium. [email protected].
  5. Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium. [email protected].
  6. TRP Channel Research Platform Leuven (TRPLe), KU Leuven, Herestraat 49, 3000, Leuven, Belgium. [email protected].
  7. Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000, Leuven, Belgium. [email protected].
  8. Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium. [email protected].
  9. TRP Channel Research Platform Leuven (TRPLe), KU Leuven, Herestraat 49, 3000, Leuven, Belgium. [email protected].
  10. Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium. [email protected].
  11. TRP Channel Research Platform Leuven (TRPLe), KU Leuven, Herestraat 49, 3000, Leuven, Belgium. [email protected].
  12. Division of Nuclear Medicine, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium. [email protected].
  13. Division of Nuclear Medicine, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium. [email protected].
  14. Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium. [email protected].
  15. TRP Channel Research Platform Leuven (TRPLe), KU Leuven, Herestraat 49, 3000, Leuven, Belgium. [email protected].
  16. Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000, Leuven, Belgium. [email protected].
  17. TRP Channel Research Platform Leuven (TRPLe), KU Leuven, Herestraat 49, 3000, Leuven, Belgium. [email protected].

PMID: 26467154 PMCID: PMC4605920 DOI: 10.1186/s13550-015-0132-0

Abstract

BACKGROUND: This feasibility study established an experimental protocol to evaluate brain activation patterns using fluorodeoxyglucose positron emission tomography ((18F)FDG-PET) during volume-induced voiding and isovolumetric bladder contractions in rats.

METHODS: Female Sprague-Dawley rats were anaesthetized with urethane and underwent either volume-induced voiding cystometry or isovolumetric cystometry and simultaneous functional PET brain imaging after injection of (18F)FDG in the tail vein. Brain glucose metabolism in both groups was compared to their respective control conditions (empty bladder). Relative glucose metabolism images were anatomically standardized to Paxinos space and analysed voxel-wise using Statistical Parametric Mapping 12 (SPM12).

RESULTS: During volume-induced voiding, glucose hypermetabolism was observed in the insular cortex while uptake was decreased in a cerebellar cluster and the dorsal midbrain. Relative glucose metabolism during isovolumetric bladder contractions increased in the insular and cingulate cortices and decreased in the cerebellum.

CONCLUSIONS: Our findings demonstrate that volume-induced voiding as well as isovolumetric bladder contractions in rats provokes changes in brain metabolism, including activation of the insular and cingulate cortices, which is consistent with their role in the mapping of bladder afferent activity. These findings are in line with human studies. Our results provide a basis for further research into the brain control of the lower urinary tract in small laboratory animals.

Keywords: Brain bladder control; Brain imaging; Rats; Small-animal PET; Urinary bladder

References

  1. Nat Rev Neurosci. 2008 Jun;9(6):453-66 - PubMed
  2. Neuroimage. 2014 May 1;91:344-52 - PubMed
  3. J Nucl Med. 2006 Nov;47(11):1858-66 - PubMed
  4. Brain. 1997 Jan;120 ( Pt 1):111-21 - PubMed
  5. J Urol. 2010 Apr;183(4):1288-95 - PubMed
  6. Neurourol Urodyn. 2008;27(6):466-74 - PubMed
  7. Prog Brain Res. 1996;107:225-42 - PubMed
  8. Brain. 2000 Apr;123 ( Pt 4):781-9 - PubMed
  9. Brain. 1995 Feb;118 ( Pt 1):279-306 - PubMed
  10. Neurourol Urodyn. 2015 Jun;34(5):469-74 - PubMed
  11. Brain. 2003 Oct;126(Pt 10):2139-52 - PubMed
  12. Neurourol Urodyn. 2010;29(1):49-55 - PubMed
  13. J Nucl Med. 2012 Dec;53(12):1916-25 - PubMed
  14. Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10589-94 - PubMed
  15. Exp Brain Res. 1996 Mar;108(3):404-16 - PubMed
  16. J Urol. 2005 Nov;174(5):1862-7 - PubMed
  17. Acta Physiol (Oxf). 2013 Jan;207(1):93-109 - PubMed
  18. J Neurophysiol. 2009 Nov;102(5):2719-30 - PubMed
  19. Neuroimage. 2007 Aug 1;37(1):1-7 - PubMed
  20. Curr Opin Neurobiol. 2003 Aug;13(4):500-5 - PubMed
  21. J Urol. 2002 Nov;168(5):2035-9 - PubMed
  22. Front Hum Neurosci. 2015 May 19;9:249 - PubMed
  23. Neuroimage. 2006 Jul 15;31(4):1399-407 - PubMed
  24. Int J Urol. 2015 Apr;22(4):342-8 - PubMed
  25. BJU Int. 2015 Apr;115 Suppl 6:8-15 - PubMed

Publication Types