Display options
Share it on

Insects. 2012 Mar 16;3(1):307-23. doi: 10.3390/insects3010307.

Fungiculture or Termite Husbandry? The Ruminant Hypothesis.

Insects

Tânia Nobre, Duur K Aanen

Affiliations

  1. Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, Radix West, Building 107, 6708 PB Wageningen, The Netherlands. [email protected].
  2. Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, Radix West, Building 107, 6708 PB Wageningen, The Netherlands. [email protected].

PMID: 26467962 PMCID: PMC4553630 DOI: 10.3390/insects3010307

Abstract

We present a new perspective for the role of Termitomyces fungi in the mutualism with fungus-growing termites. According to the predominant view, this mutualism is as an example of agriculture with termites as farmers of a domesticated fungus crop, which is used for degradation of plant-material and production of fungal biomass. However, a detailed study of the literature indicates that the termites might as well be envisioned as domesticates of the fungus. According to the "ruminant hypothesis" proposed here, termite workers, by consuming asexual fruiting bodies not only harvest asexual spores, but also lignocellulolytic enzymes, which they mix with foraged plant material and enzymes of termite and possibly bacterial origin. This mixture is the building material of the fungus garden and facilitates efficient degradation of plant material. The fungus garden thus functions as an external rumen for termites and primarily the fungi themselves benefit from their own, and gut-derived, lignocellulolytic enzymes, using the termites to efficiently mix these with their growth substrate. Only secondarily the termites benefit, when they consume the degraded, nitrogen-enriched plant-fungus mixture a second time. We propose that the details of substrate use, and the degree of complementarity and redundancy among enzymes in food processing, determine selection of horizontally transmitted fungal symbionts at the start of a colony: by testing spores on a specific, mechanically and enzymatically pre-treated growth substrate, the termite host has the opportunity to select specific fungal symbionts. Potentially, the gut-microbiota thus influence host-fungus specificity, and the selection of specific fungal strains at the start of a new colony. We argue that we need to expand the current bipartite insect-biased view of the mutualism of fungus-growing termites and include the possible role of bacteria and the benefit for the fungi to fully understand the division of labor among partners in substrate degradation.

Keywords: Macrotermitinae; Termitomyces; fungus-growing termites; gut microbiota; host-symbiont specificity; lignocellulose; ruminant hypothesis

References

  1. FEMS Microbiol Ecol. 2001 Mar;35(1):27-36 - PubMed
  2. Q Rev Biol. 2001 Jun;76(2):169-97 - PubMed
  3. Evolution. 2001 Oct;55(10):2011-27 - PubMed
  4. Biosci Biotechnol Biochem. 2002 Jan;66(1):78-84 - PubMed
  5. Mol Phylogenet Evol. 2002 Mar;22(3):423-9 - PubMed
  6. Bioresour Technol. 2002 May;83(1):1-11 - PubMed
  7. Mol Ecol. 2002 Aug;11(8):1565-72 - PubMed
  8. Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14887-92 - PubMed
  9. Appl Microbiol Biotechnol. 2003 Mar;61(1):1-9 - PubMed
  10. Biosystems. 1992;27(1):39-51 - PubMed
  11. Annu Rev Entomol. 1998;43:17-37 - PubMed
  12. Curr Biol. 2005 May 10;15(9):851-5 - PubMed
  13. Mycol Res. 2005 Mar;109(Pt 3):314-8 - PubMed
  14. Annu Rev Microbiol. 2005;59:155-89 - PubMed
  15. Mol Ecol. 2006 Feb;15(2):505-16 - PubMed
  16. Mol Ecol. 2006 Oct;15(11):3131-8 - PubMed
  17. Biol Lett. 2006 Jun 22;2(2):209-12 - PubMed
  18. J Basic Microbiol. 2007 Apr;47(2):127-31 - PubMed
  19. BMC Evol Biol. 2007 Jul 13;7:115 - PubMed
  20. Science. 1978 Mar 31;199(4336):1453-5 - PubMed
  21. Int J Med Microbiol. 2009 Jan;299(1):1-8 - PubMed
  22. Science. 2008 Oct 3;322(5898):63 - PubMed
  23. Biochim Biophys Acta. 1991 Jan 29;1076(2):215-20 - PubMed
  24. Proc Biol Sci. 2010 Feb 7;277(1680):359-65 - PubMed
  25. Science. 2009 Nov 20;326(5956):1103-6 - PubMed
  26. Ecol Lett. 2010 Feb;13(2):223-34 - PubMed
  27. Nat Commun. 2010 Nov 02;1:103 - PubMed
  28. Appl Environ Microbiol. 2011 Jan;77(1):48-56 - PubMed
  29. Cell Mol Life Sci. 2011 Apr;68(8):1297-309 - PubMed
  30. Mol Ecol. 2011 May;20(9):2023-33 - PubMed
  31. Mol Ecol. 2011 Jun;20(12):2619-27 - PubMed
  32. World J Microbiol Biotechnol. 1995 May;11(3):359-60 - PubMed
  33. World J Microbiol Biotechnol. 1993 Jan;9(1):108-12 - PubMed
  34. J Insect Sci. 2014;14:81 - PubMed
  35. Oecologia. 1981 Jan;51(3):371-378 - PubMed
  36. Biochim Biophys Acta. 1980 Mar 14;612(1):143-52 - PubMed
  37. Clin Infect Dis. 1993 Jun;16 Suppl 4:S160-7 - PubMed
  38. Acta Microbiol Immunol Hung. 1994;41(4):391-401 - PubMed
  39. Comp Biochem Physiol B Biochem Mol Biol. 1995 Dec;112(4):629-35 - PubMed

Publication Types