Display options
Share it on

R Soc Open Sci. 2015 Jul 29;2(7):140424. doi: 10.1098/rsos.140424. eCollection 2015 Jul.

Regional differentiation and extensive hybridization between mitochondrial clades of the Southern Ocean giant sea spider Colossendeis megalonyx.

Royal Society open science

Lars Dietz, Claudia P Arango, Jana S Dömel, Kenneth M Halanych, Avril M Harder, Christoph Held, Andrew R Mahon, Christoph Mayer, Roland R Melzer, Greg W Rouse, Andrea Weis, Nerida G Wilson, Florian Leese

Affiliations

  1. Faculty of Biology and Biotechnology, Department of Animal Ecology, Evolution and Biodiversity , Ruhr University Bochum , Universitaetsstrasse 150, Bochum 44801, Germany.
  2. Natural Environments Program , Queensland Museum , PO Box 3300, South Brisbane, Queensland 4101, Australia.
  3. Auburn University , 101 Rouse Life Sciences Building, AL 36849, USA.
  4. Department of Biology , Institute for Great Lakes Research, Central Michigan University , Mount Pleasant, MI, USA.
  5. Alfred Wegener Institute , Helmholtz Center for Marine and Polar Biology , Am Alten Hafen 26, Bremerhaven 25768, Germany.
  6. Zoological Research Museum Alexander Koenig , Adenauerallee 160 , Bonn 53113, Germany.
  7. Bavarian State Collection of Zoology-SNSB , Münchhausenstraße 21 , Munich 81247, Germany ; Department Biology II , Ludwig-Maximilians-Universität München , Großhaderner Straße 2, Planegg-Martinsried 82152, Germany ; GeoBio-Center , Richard-Wagner-Straße 10 , Munich 80333, Germany.
  8. Scripps Institution of Oceanography , University of California , San Diego, 9500 Gilman Drive, La Jolla 92093-0202, CA, USA.
  9. Bavarian State Collection of Zoology-SNSB , Münchhausenstraße 21 , Munich 81247, Germany.
  10. Scripps Institution of Oceanography , University of California , San Diego, 9500 Gilman Drive, La Jolla 92093-0202, CA, USA ; Western Australian Museum , Locked Bag 49, Welshpool DC, Western Australia 6986, Australia.

PMID: 26587257 PMCID: PMC4632570 DOI: 10.1098/rsos.140424

Abstract

Assessing the enormous diversity of Southern Ocean benthic species and their evolutionary histories is a central task in the era of global climate change. Based on mitochondrial markers, it was recently suggested that the circumpolar giant sea spider Colossendeis megalonyx comprises a complex of at least six cryptic species with mostly small and non-overlapping distribution ranges. Here, we expand the sampling to include over 500 mitochondrial COI sequences of specimens from around the Antarctic. Using multiple species delimitation approaches, the number of distinct mitochondrial OTUs increased from six to 15-20 with our larger dataset. In contrast to earlier studies, many of these clades show almost circumpolar distributions. Additionally, analysis of the nuclear internal transcribed spacer region for a subset of these specimens showed incongruence between nuclear and mitochondrial results. These mito-nuclear discordances suggest that several of the divergent mitochondrial lineages can hybridize and should not be interpreted as cryptic species. Our results suggest survival of C. megalonyx during Pleistocene glaciations in multiple refugia, some of them probably located on the Antarctic shelf, and emphasize the importance of multi-gene datasets to detect the presence of cryptic species, rather than their inference based on mitochondrial data alone.

Keywords: Antarctic; Pycnogonida; benthos; glacial refugia; phylogeography; speciation

References

  1. Bioinformatics. 2006 Nov 1;22(21):2688-90 - PubMed
  2. Mol Ecol. 2008 May;17(9):2107-21 - PubMed
  3. Mol Mar Biol Biotechnol. 1994 Oct;3(5):294-9 - PubMed
  4. Mol Ecol. 2012 Apr;21(8):1864-77 - PubMed
  5. BMC Evol Biol. 2012 Oct 02;12:196 - PubMed
  6. Syst Biol. 2012 May;61(3):539-42 - PubMed
  7. Mol Biol Evol. 2013 Apr;30(4):772-80 - PubMed
  8. Mol Ecol. 2009 Mar;18(5):965-984 - PubMed
  9. Mol Ecol. 2011 Aug;20(16):3439-54 - PubMed
  10. Mol Ecol. 2012 Jun;21(11):2775-87 - PubMed
  11. Mol Biol Evol. 2013 Dec;30(12):2725-9 - PubMed
  12. PLoS One. 2012;7(11):e49202 - PubMed
  13. Mol Ecol. 2013 Oct;22(20):5221-36 - PubMed
  14. Ecology. 2008 Mar;89(3):682-92 - PubMed
  15. Mol Biol Evol. 2012 Aug;29(8):1969-73 - PubMed
  16. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 - PubMed
  17. PLoS One. 2011 Mar 14;6(3):e17828 - PubMed
  18. Mol Ecol. 2012 May;21(10):2502-18 - PubMed
  19. PLoS One. 2010 Aug 02;5(8):e11683 - PubMed
  20. Trends Ecol Evol. 2012 Aug;27(8):462-71 - PubMed
  21. PLoS One. 2012;7(9):e46283 - PubMed
  22. Trends Ecol Evol. 2005 Oct;20(10):534-40 - PubMed
  23. Mol Ecol. 2008 Jan;17(1):30-44 - PubMed
  24. Integr Comp Biol. 2010 Dec;50(6):981-92 - PubMed
  25. Yi Chuan Xue Bao. 2006 Aug;33(8):702-10 - PubMed
  26. Trends Ecol Evol. 2012 Sep;27(9):520-8 - PubMed
  27. Mol Phylogenet Evol. 2010 Jun;55(3):1055-69 - PubMed
  28. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6491-5 - PubMed
  29. PLoS One. 2013 Nov 26;8(11):e80277 - PubMed
  30. Mar Biotechnol (NY). 2001 Jul;3(4):355-61 - PubMed
  31. Mol Biol Evol. 2000 Feb;17(2):284-91 - PubMed
  32. Syst Biol. 2007 Aug;56(4):564-77 - PubMed
  33. Zootaxa. 2013 Feb 22;3616:401-36 - PubMed
  34. Nat Methods. 2012 Jul 30;9(8):772 - PubMed
  35. Mol Ecol. 2012 Aug;21(16):3907-30 - PubMed
  36. Mol Biol Evol. 1997 May;14(5):465-73 - PubMed
  37. Integr Comp Biol. 2012 Oct;52(4):470-82 - PubMed
  38. Proc Biol Sci. 2003 Aug 7;270 Suppl 1:S124-7 - PubMed

Publication Types