Display options
Share it on

J Med Phys. 2015 Jul-Sep;40(3):136-43. doi: 10.4103/0971-6203.165077.

Simulation of the 6 MV Elekta Synergy Platform linac photon beam using Geant4 Application for Tomographic Emission.

Journal of medical physics

Samir Didi, Abdelilah Moussa, Tayalati Yahya, Zerfaoui Mustafa

Affiliations

  1. Department of Physics, Laboratory of Physics of Radiation and Matter, Faculty of Sciences, University Mohammed First, Oujda 60000, Morocco ; Department of Physics, Regional Hassan II Oncology Center, Oujda 60000, Morocco.
  2. Department of Physics, Laboratory of Physics of Radiation and Matter, Faculty of Sciences, University Mohammed First, Oujda 60000, Morocco ; Department of Physics, National School of Applied sciences of Al-Hoceima, Morocco.
  3. Department of Physics, Laboratory of Physics of Radiation and Matter, Faculty of Sciences, University Mohammed First, Oujda 60000, Morocco.

PMID: 26500399 PMCID: PMC4594382 DOI: 10.4103/0971-6203.165077

Abstract

The present work validates the Geant4 Application for Tomographic Emission Monte Carlo software for the simulation of a 6 MV photon beam given by Elekta Synergy Platform medical linear accelerator treatment head. The simulation includes the major components of the linear accelerator (LINAC) with multi-leaf collimator and a homogeneous water phantom. Calculations were performed for the photon beam with several treatment field sizes ranging from 5 cm × 5 cm to 30 cm × 30 cm at 100 cm distance from the source. The simulation was successfully validated by comparison with experimental distributions. Good agreement between simulations and measurements was observed, with dose differences of about 0.02% and 2.5% for depth doses and lateral dose profiles, respectively. This agreement was also emphasized by the Kolmogorov-Smirnov goodness-of-fit test and by the gamma-index comparisons where more than 99% of the points for all simulations fulfill the quality assurance criteria of 2 mm/2%.

Keywords: Geant4 Application for Tomographic Emission/Geant4; Monte Carlo; grid; radiotherapy

References

  1. Rep Pract Oncol Radiother. 2010 May 20;15(3):64-8 - PubMed
  2. Phys Med Biol. 2012 Nov 21;57(22):7599-614 - PubMed
  3. Med Phys. 2005 Apr;32(4):1164-75 - PubMed
  4. Med Phys. 2007 Dec;34(12):4818-53 - PubMed
  5. Phys Med Biol. 2008 Jun 7;53(11):3039-55 - PubMed
  6. Med Phys. 2005 Jun;32(6):1696-711 - PubMed
  7. J Appl Clin Med Phys. 2012 Mar 08;13(2):3616 - PubMed
  8. Phys Med Biol. 2005 Feb 21;50(4):681-94 - PubMed
  9. Med Phys. 2013 Feb;40(2):021711 - PubMed
  10. Med Phys. 2012 Aug;39(8):5238-47 - PubMed
  11. Int J Radiat Oncol Biol Phys. 1993 May 20;26(2):261-73 - PubMed
  12. Radiother Oncol. 1998 Dec;49(3):305-16 - PubMed
  13. Phys Med Biol. 1999 Nov;44(11):R99-155 - PubMed
  14. Phys Med Biol. 2004 Oct 7;49(19):4543-61 - PubMed
  15. J Med Signals Sens. 2014 Jan;4(1):10-7 - PubMed
  16. Phys Med Biol. 2011 Feb 7;56(3):811-27 - PubMed
  17. Med Phys. 2010 May;37(5):2279-88 - PubMed
  18. Med Phys. 1998 Jul;25(7 Pt 1):1202-5 - PubMed
  19. Med Phys. 2011 Jul;38(7):4018-24 - PubMed
  20. Phys Med Biol. 2003 Nov 7;48(21):R107-64 - PubMed
  21. Phys Med Biol. 2011 Feb 21;56(4):903-18 - PubMed
  22. Radiother Oncol. 2002 Mar;62(3):309-19 - PubMed
  23. Med Phys. 2004 Oct;31(10):2883-98 - PubMed
  24. Phys Med Biol. 2011 Feb 21;56(4):881-901 - PubMed
  25. Med Phys. 1998 May;25(5):656-61 - PubMed
  26. Med Phys. 2003 Sep;30(9):2455-64 - PubMed

Publication Types