Display options
Share it on

Skelet Muscle. 2015 Nov 10;5:37. doi: 10.1186/s13395-015-0064-4. eCollection 2015.

Differential myofiber-type transduction preference of adeno-associated virus serotypes 6 and 9.

Skeletal muscle

Muhammad Riaz, Yotam Raz, Elizabeth B Moloney, Maaike van Putten, Yvonne D Krom, Silvere M van der Maarel, Joost Verhaagen, Vered Raz

Affiliations

  1. Department of Human Genetics, Leiden University Medical Center, Building 2, Room R3-17, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
  2. Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Dutch Academy of Sciences, Amsterdam, The Netherlands.
  3. Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Dutch Academy of Sciences, Amsterdam, The Netherlands ; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognition Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

PMID: 26561520 PMCID: PMC4641337 DOI: 10.1186/s13395-015-0064-4

Abstract

BACKGROUND: Gene therapy strategies are promising therapeutic options for monogenic muscular dystrophies, with several currently underways. The adeno-associated viral (AAV) vector is among the most effective gene delivery systems. However, transduction efficiency in skeletal muscles varies between AAV serotypes, with the underlying factors poorly understood. We hypothesized that myofiber-specific tropism differs between AAV serotypes.

METHODS: We developed a quantitative histology procedure and generated myofiber pattern maps for four myosin heavy chain (MyHC) isotypes. We compared myofiber pattern maps between AAV6 or AAV9 injected tibialis anterior muscle in mice. We correlated MyHC expression with AAV-derived green fluorescence protein (GFP) expression using statistical models.

RESULTS: We found that MyHC-2x expressing myofibers display a significantly higher preference for AAV transduction, whereas MyHC-2b expressing myofibers negatively correlated with AAV transduction. In addition, we show that AAV9-mediated transduction is enriched in myofibers expressing MyHC-1 and MyHC-1/2a. Moreover, AAV9-mediated transduction can predominantly be predicted by the expression of MyHC isotypes. In contrast, AAV6 transduction can be predicted by myofiber size but not by myofiber types.

CONCLUSIONS: Our findings identify differences between AAV6 and AAV9 for myofiber-type preferences, which could be an underlying factor for mosaic transduction of skeletal muscle. Adjusting AAV serotype for specific muscle conditions can therefore improve transduction efficacy in clinical applications.

Keywords: AAV serotypes; Adeno-associated viral vectors; Gene therapy; Myofiber types; Skeletal muscle

References

  1. Curr Opin Clin Nutr Metab Care. 2013 May;16(3):243-50 - PubMed
  2. Physiol Rev. 2011 Oct;91(4):1447-531 - PubMed
  3. Virology. 2011 Sep 1;417(2):327-33 - PubMed
  4. Muscle Nerve. 2008 Jan;37(1):104-6 - PubMed
  5. BMC Genet. 2000;1:1 - PubMed
  6. Hum Mol Genet. 2010 Jun 1;19(11):2191-207 - PubMed
  7. J Virol. 2006 Sep;80(18):9093-103 - PubMed
  8. Hum Gene Ther. 2015 May;26(5):257-65 - PubMed
  9. Mol Ther. 2008 Jun;16(6):1073-80 - PubMed
  10. J Virol. 2006 Oct;80(19):9831-6 - PubMed
  11. Nat Methods. 2012 Jul;9(7):671-5 - PubMed
  12. Mol Ther. 2011 Nov;19(11):2055-64 - PubMed
  13. Mol Ther. 2003 Jun;7(6):839-50 - PubMed
  14. J Biol Chem. 2011 Apr 15;286(15):13532-40 - PubMed
  15. PLoS Biol. 2004 Oct;2(10):e348 - PubMed
  16. J Neurosci Methods. 2014 Apr 30;227:107-20 - PubMed
  17. Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11854-9 - PubMed
  18. Nat Rev Genet. 2014 Jul;15(7):445-51 - PubMed
  19. Mol Ther Methods Clin Dev. 2014;1:null - PubMed
  20. Front Microbiol. 2011 Nov 03;2:220 - PubMed
  21. Int J Biochem Cell Biol. 2013 Oct;45(10):2191-9 - PubMed
  22. Hum Gene Ther. 1999 Jul 20;10 (11):1885-91 - PubMed
  23. Hum Mol Genet. 2002 Oct 1;11(20):2355-62 - PubMed
  24. Gene Ther. 2007 Nov;14(22):1605-9 - PubMed
  25. Nat Rev Genet. 2011 May;12(5):341-55 - PubMed
  26. Mol Med. 2013 Feb 08;18:1527-35 - PubMed
  27. Mol Ther. 2004 Oct;10(4):671-8 - PubMed
  28. Mol Ther. 2012 Apr;20(4):699-708 - PubMed
  29. Gene Ther. 2005 Feb;12(4):347-57 - PubMed
  30. PLoS One. 2012;7(4):e35273 - PubMed
  31. Front Microbiol. 2011 Sep 26;2:201 - PubMed
  32. Mol Ther Methods Clin Dev. 2014 Mar 5;1:14002 - PubMed
  33. PLoS Biol. 2010 Jun 29;8(6):e1000412 - PubMed

Publication Types