Display options
Share it on

Front Plant Sci. 2015 Oct 08;6:841. doi: 10.3389/fpls.2015.00841. eCollection 2015.

Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.).

Frontiers in plant science

Michael B Kantar, Chrystian C Sosa, Colin K Khoury, Nora P Castañeda-Álvarez, Harold A Achicanoy, Vivian Bernau, Nolan C Kane, Laura Marek, Gerald Seiler, Loren H Rieseberg

Affiliations

  1. Biodiversity Research Centre and Department of Botany, University of British Columbia Vancouver, BC, Canada ; Department of Agronomy and Plant Genetics, University of Minnesota St. Paul, MN, USA.
  2. International Center for Tropical Agriculture Cali, Colombia.
  3. International Center for Tropical Agriculture Cali, Colombia ; Centre for Crop Systems Analysis, Wageningen University Wageningen, Netherlands.
  4. International Center for Tropical Agriculture Cali, Colombia ; School of Biosciences, University of Birmingham Birmingham, UK.
  5. International Center for Tropical Agriculture Cali, Colombia ; Department of Horticulture and Crop Science, The Ohio State University Columbus, OH, USA.
  6. Department of Ecology and Evolutionary Biology, University of Colorado at Boulder Boulder, CO, USA.
  7. Agronomy Department, North Central Regional Plant Introduction Station, Iowa State University and United States Department of Agriculture Agricultural Research Service Ames, IA, USA.
  8. Northern Crop Science Laboratory, United States Department of Agriculture Agricultural Research Service Fargo, ND, USA.
  9. Biodiversity Research Centre and Department of Botany, University of British Columbia Vancouver, BC, Canada ; Department of Biology, Indiana University Bloomington, IN, USA.

PMID: 26500675 PMCID: PMC4597133 DOI: 10.3389/fpls.2015.00841

Abstract

Crop wild relatives (CWR) are a rich source of genetic diversity for crop improvement. Combining ecogeographic and phylogenetic techniques can inform both conservation and breeding. Geographic occurrence, bioclimatic, and biophysical data were used to predict species distributions, range overlap and niche occupancy in 36 taxa closely related to sunflower (Helianthus annuus L.). Taxa lacking comprehensive ex situ conservation were identified. The predicted distributions for 36 Helianthus taxa identified substantial range overlap, range asymmetry and niche conservatism. Specific taxa (e.g., Helianthus deblis Nutt., Helianthus anomalus Blake, and Helianthus divaricatus L.) were identified as targets for traits of interest, particularly for abiotic stress tolerance, and adaptation to extreme soil properties. The combination of techniques demonstrates the potential for publicly available ecogeographic and phylogenetic data to facilitate the identification of possible sources of abiotic stress traits for plant breeding programs. Much of the primary genepool (wild H. annuus) occurs in extreme environments indicating that introgression of targeted traits may be relatively straightforward. Sister taxa in Helianthus have greater range overlap than more distantly related taxa within the genus. This adds to a growing body of literature suggesting that in plants (unlike some animal groups), geographic isolation may not be necessary for speciation.

Keywords: climate change; conservation; crop wild relatives; ecological niche modeling; plant breeding; plant genetic resources; publicly available data sources

References

  1. Proc Natl Acad Sci U S A. 1999 May 25;96(11):5937-43 - PubMed
  2. Theor Appl Genet. 2003 Apr;106(6):990-1003 - PubMed
  3. Evolution. 2003 Apr;57(4):717-45 - PubMed
  4. Nature. 2004 Jul 8;430(6996):201-5 - PubMed
  5. J Hered. 2005 May-Jun;96(3):241-52 - PubMed
  6. Genetics. 2006 May;173(1):321-30 - PubMed
  7. Genetics. 2007 Sep;177(1):457-68 - PubMed
  8. Evolution. 2008 Nov;62(11):2868-83 - PubMed
  9. Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9939-46 - PubMed
  10. Evolution. 2009 Dec;63(12):3258-68 - PubMed
  11. Science. 2010 Feb 12;327(5967):818-22 - PubMed
  12. Bioinformatics. 2010 Jun 1;26(11):1463-4 - PubMed
  13. PLoS One. 2010 Oct 20;5(10):e13497 - PubMed
  14. Mol Phylogenet Evol. 2011 Mar;58(3):546-52 - PubMed
  15. Theor Appl Genet. 2011 Sep;123(5):693-704 - PubMed
  16. Philos Trans R Soc Lond B Biol Sci. 2011 Aug 27;366(1576):2438-48 - PubMed
  17. Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14360-5 - PubMed
  18. J Integr Plant Biol. 2012 May;54(5):312-20 - PubMed
  19. Ecology. 2012 Feb;93(2):242-7 - PubMed
  20. Mol Phylogenet Evol. 2012 Nov;65(2):437-50 - PubMed
  21. Mol Ecol Resour. 2013 Jan;13(1):10-20 - PubMed
  22. PLoS One. 2012;7(12):e51360 - PubMed
  23. Nat Commun. 2013;4:1827 - PubMed
  24. Nature. 2013 Jul 4;499(7456):23-4 - PubMed
  25. Evolution. 2014 Jan;68(1):1-15 - PubMed
  26. Mol Biol Evol. 2013 Dec;30(12):2725-9 - PubMed
  27. Evolution. 2014 May;68(5):1270-80 - PubMed
  28. Proc Biol Sci. 2014 Jan 22;281(1778):20132980 - PubMed
  29. G3 (Bethesda). 2014 Apr 22;4(7):1193-203 - PubMed
  30. Evolution. 2014 Oct;68(10):2917-31 - PubMed
  31. PLoS One. 2014 Aug 29;9(8):e105992 - PubMed
  32. Syst Biol. 2015 Jul;64(4):677-89 - PubMed
  33. Evolution. 1973 Jun;27(2):311-325 - PubMed

Publication Types