Display options
Share it on

Sci Rep. 2015 Nov 13;5:16036. doi: 10.1038/srep16036.

Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits.

Scientific reports

Alessandro Chiesa, Paolo Santini, Dario Gerace, James Raftery, Andrew A Houck, Stefano Carretta

Affiliations

  1. Dipartimento di Fisica e Scienze della Terra, Università di Parma, I-43124 Parma, Italy.
  2. Dipartimento di Fisica, Università di Pavia, via Bassi 6, I-27100 Pavia, Italy.
  3. Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA.

PMID: 26563516 PMCID: PMC4643341 DOI: 10.1038/srep16036

Abstract

Resolving quantum many-body problems represents one of the greatest challenges in physics and physical chemistry, due to the prohibitively large computational resources that would be required by using classical computers. A solution has been foreseen by directly simulating the time evolution through sequences of quantum gates applied to arrays of qubits, i.e. by implementing a digital quantum simulator. Superconducting circuits and resonators are emerging as an extremely promising platform for quantum computation architectures, but a digital quantum simulator proposal that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is presently lacking. Here we propose a viable scheme to implement a universal quantum simulator with hybrid spin-photon qubits in an array of superconducting resonators, which is intrinsically scalable and allows for local control. As representative examples we consider the transverse-field Ising model, a spin-1 Hamiltonian, and the two-dimensional Hubbard model and we numerically simulate the scheme by including the main sources of decoherence.

References

  1. Phys Rev Lett. 2011 Nov 25;107(22):220501 - PubMed
  2. Phys Rev Lett. 2009 Aug 14;103(7):070502 - PubMed
  3. Science. 1996 Aug 23;273(5278):1073-8 - PubMed
  4. Phys Rev Lett. 2013 Jun 21;110(25):250503 - PubMed
  5. Nature. 2008 Jun 19;453(7198):1031-42 - PubMed
  6. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Feb;51(2):1004-1005 - PubMed
  7. Science. 2011 Oct 7;334(6052):61-5 - PubMed
  8. Phys Rev Lett. 2005 May 6;94(17):170201 - PubMed
  9. Phys Rev Lett. 2008 Dec 12;101(24):240401 - PubMed
  10. Science. 2003 Mar 21;299(5614):1869-71 - PubMed
  11. Phys Rev Lett. 2013 Sep 13;111(11):110501 - PubMed
  12. Nat Commun. 2015;6:7654 - PubMed
  13. Phys Rev Lett. 1989 Jul 17;63(3):322-325 - PubMed
  14. Sci Rep. 2014 Dec 15;4:7482 - PubMed
  15. Nature. 2014 Apr 24;508(7497):500-3 - PubMed
  16. Nature. 2009 Jul 9;460(7252):240-4 - PubMed
  17. Phys Rev Lett. 2010 Oct 1;105(14):140501 - PubMed
  18. Phys Rev Lett. 2011 Dec 2;107(23):230502 - PubMed
  19. Science. 2011 Oct 7;334(6052):57-61 - PubMed

Publication Types