Display options
Share it on

J Chem Phys. 2015 Oct 14;143(14):144305. doi: 10.1063/1.4931928.

Water network-mediated, electron-induced proton transfer in [C5H5N ⋅ (H2O)n](-) clusters.

The Journal of chemical physics

Andrew F DeBlase, Conrad T Wolke, Gary H Weddle, Kaye A Archer, Kenneth D Jordan, John T Kelly, Gregory S Tschumper, Nathan I Hammer, Mark A Johnson

Affiliations

  1. Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, USA.
  2. Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA.
  3. Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677, USA.

PMID: 26472377 PMCID: PMC4605626 DOI: 10.1063/1.4931928

Abstract

The role of proton-assisted charge accommodation in electron capture by a heterocyclic electron scavenger is investigated through theoretical analysis of the vibrational spectra of cold, gas phase [Py ⋅ (H2O)n=3-5](-) clusters. These radical anions are formed when an excess electron is attached to water clusters containing a single pyridine (Py) molecule in a supersonic jet ion source. Under these conditions, the cluster ion distribution starts promptly at n = 3, and the photoelectron spectra, combined with vibrational predissociation spectra of the Ar-tagged anions, establish that for n > 3, these species are best described as hydrated hydroxide ions with the neutral pyridinium radical, PyH((0)), occupying one of the primary solvation sites of the OH(-). The n = 3 cluster appears to be a special case where charge localization on Py and hydroxide is nearly isoenergetic, and the nature of this species is explored with ab initio molecular dynamics calculations of the trajectories that start from metastable arrangements of the anion based on a diffuse, essentially dipole-bound electron. These calculations indicate that the reaction proceeds via a relatively slow rearrangement of the water network to create a favorable hydration configuration around the water molecule that eventually donates a proton to the Py nitrogen atom to yield the product hydroxide ion. The correlation between the degree of excess charge localization and the evolving shape of the water network revealed by this approach thus provides a microscopic picture of the "solvent coordinate" at the heart of a prototypical proton-coupled electron transfer reaction.

References

  1. J Phys Chem A. 2010 Sep 2;114(34):8939-47 - PubMed
  2. Science. 2004 Oct 22;306(5696):675-9 - PubMed
  3. J Chem Phys. 2012 Feb 14;136(6):064307 - PubMed
  4. J Am Chem Soc. 2005 Nov 2;127(43):15283-95 - PubMed
  5. J Phys Chem A. 2008 Nov 6;112(44):11021-35 - PubMed
  6. J Phys Chem A. 2010 Jan 28;114(3):1592-601 - PubMed
  7. J Comput Chem. 2006 Nov 30;27(15):1787-99 - PubMed
  8. J Am Chem Soc. 2006 May 3;128(17):5828-33 - PubMed
  9. J Chem Phys. 2006 Jul 7;125(1):014315 - PubMed
  10. J Phys Chem A. 2009 Apr 23;113(16):4772-9 - PubMed
  11. Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789 - PubMed
  12. J Phys Chem A. 2012 Jan 26;116(3):903-12 - PubMed
  13. J Phys Chem A. 2013 Dec 19;117(50):13680-90 - PubMed
  14. Phys Chem Chem Phys. 2015 Dec 23;18(2):704-12 - PubMed
  15. J Phys Chem A. 2005 Dec 22;109(50):11526-30 - PubMed
  16. Phys Rev B Condens Matter. 1996 Jul 15;54(3):1703-1710 - PubMed
  17. Phys Chem Chem Phys. 2014 Nov 14;16(42):23143-9 - PubMed
  18. J Am Chem Soc. 2013 Jan 9;135(1):142-54 - PubMed
  19. Phys Rev A Gen Phys. 1988 Sep 15;38(6):3098-3100 - PubMed
  20. J Phys Chem A. 2006 Apr 20;110(15):4943-52 - PubMed
  21. Science. 2010 Jan 15;327(5963):308-12 - PubMed
  22. ChemSusChem. 2011 Feb 18;4(2):191-6 - PubMed
  23. J Phys Chem A. 2014 Sep 4;118(35):7590-7 - PubMed
  24. Science. 2003 Feb 28;299(5611):1367-72 - PubMed
  25. J Chem Phys. 2009 Jun 14;130(22):224309 - PubMed
  26. Science. 2005 Jan 7;307(5706):93-6 - PubMed

Publication Types