Display options
Share it on

Biomed Opt Express. 2015 Sep 01;6(10):3701-13. doi: 10.1364/BOE.6.003701. eCollection 2015 Oct 01.

Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy.

Biomedical optics express

Ji Yi, Siyu Chen, Xiao Shu, Amani A Fawzi, Hao F Zhang

Affiliations

  1. Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208 USA ; These authors contributed equally to this work.
  2. Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, 645 N Michigan Ave, Chicago, IL 60611 USA.
  3. Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208 USA ; Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, 645 N Michigan Ave, Chicago, IL 60611 USA.

PMID: 26504622 PMCID: PMC4605031 DOI: 10.1364/BOE.6.003701

Abstract

We achieved human retinal imaging using visible-light optical coherence tomography (vis-OCT) guided by an integrated scanning laser ophthalmoscopy (SLO). We adapted a spectral domain OCT configuration and used a supercontinuum laser as the illumating source. The center wavelength was 564 nm and the bandwidth was 115 nm, which provided a 0.97 µm axial resolution measured in air. We characterized the sensitivity to be 86 dB with 226 µW incidence power on the pupil. We also integrated an SLO that shared the same optical path of the vis-OCT sample arm for alignment purposes. We demonstrated the retinal imaging from both systems centered at the fovea and optic nerve head with 20° × 20° and 10° × 10° field of view. We observed similar anatomical structures in vis-OCT and NIR-OCT. The contrast appeared different from vis-OCT to NIR-OCT, including slightly weaker signal from intra-retinal layers, and increased visibility and contrast of anatomical layers in the outer retina.

Keywords: (110.4190) Multiple imaging; (170.0110) Imaging systems; (170.4470) Ophthalmology; (170.4500) Optical coherence tomography

References

  1. Phys Med Biol. 2013 Jun 7;58(11):R37-61 - PubMed
  2. Opt Express. 2011 Feb 14;19(4):3044-62 - PubMed
  3. Opt Express. 2011 Jan 17;19(2):1271-83 - PubMed
  4. Biomed Opt Express. 2015 Jul 10;6(8):2840-53 - PubMed
  5. Prog Retin Eye Res. 2012 Sep;31(5):377-406 - PubMed
  6. J Biomed Opt. 2002 Jul;7(3):457-63 - PubMed
  7. Opt Express. 2003 Dec 15;11(25):3490-7 - PubMed
  8. Opt Express. 2006 May 15;14(10):4403-11 - PubMed
  9. Klin Monbl Augenheilkd. 2000 May;216(5):309-10 - PubMed
  10. Biomed Opt Express. 2011 Jun 1;2(6):1539-52 - PubMed
  11. Opt Lett. 2010 May 1;35(9):1467-9 - PubMed
  12. Science. 1991 Nov 22;254(5035):1178-81 - PubMed
  13. Nat Photonics. 2011 Dec 1;5(12):744-747 - PubMed
  14. Opt Lett. 2002;27(20):1800-2 - PubMed
  15. Opt Express. 2010 Feb 1;18(3):2477-94 - PubMed
  16. Biomed Opt Express. 2013 Aug 30;4(10):1890-908 - PubMed
  17. Invest Ophthalmol Vis Sci. 1995 Mar;36(3):542-54 - PubMed
  18. Invest Ophthalmol Vis Sci. 2014 Sep 02;55(9):6055-8 - PubMed
  19. Opt Express. 2007 May 14;15(10):6121-39 - PubMed
  20. Biomed Opt Express. 2010 Jul 27;1(1):310-317 - PubMed
  21. Opt Lett. 2007 Jul 15;32(14):2049-51 - PubMed
  22. Invest Ophthalmol Vis Sci. 2012 Sep 12;53(10):6062-71 - PubMed
  23. Ophthalmology. 2014 Jul;121(7):1435-44 - PubMed
  24. Opt Lett. 2010 Jun 15;35(12):2094-6 - PubMed
  25. J Biomed Opt. 2007 Jul-Aug;12(4):041215 - PubMed
  26. Light Sci Appl. 2015 Sep;4(9):null - PubMed
  27. Opt Express. 2011 Sep 26;19(20):19653-9 - PubMed
  28. J Cereb Blood Flow Metab. 2013 Nov;33(11):1685-95 - PubMed
  29. Biomed Opt Express. 2015 Mar 24;6(4):1429-50 - PubMed
  30. J Opt Soc Am A Opt Image Sci Vis. 2007 May;24(5):1250-65 - PubMed
  31. Opt Lett. 2013 Jun 1;38(11):1796-8 - PubMed
  32. Biomed Opt Express. 2015 Apr 02;6(5):1534-52 - PubMed

Publication Types

Grant support