Display options
Share it on

Front Neurosci. 2015 Oct 20;9:350. doi: 10.3389/fnins.2015.00350. eCollection 2015.

A novel biomarker of amnestic MCI based on dynamic cross-frequency coupling patterns during cognitive brain responses.

Frontiers in neuroscience

Stavros I Dimitriadis, Nikolaos A Laskaris, Malamati P Bitzidou, Ioannis Tarnanas, Magda N Tsolaki

Affiliations

  1. Artificial Intelligence Information Analysis Lab, Department of Informatics, Aristotle University of Thessaloniki Thessaloniki, Greece ; Neuroinformatics Group, Department of Informatics, Aristotle University of Thessaloniki Thessaloniki, Greece.
  2. Artificial Intelligence Information Analysis Lab, Department of Informatics, Aristotle University of Thessaloniki Thessaloniki, Greece.
  3. Health-IS Lab, Chair of Information Management, ETH Zurich Zurich, Switzerland ; 3rd Department of Neurology, Medical School, Aristotle University of Thessaloniki Thessaloniki, Greece.
  4. 3rd Department of Neurology, Medical School, Aristotle University of Thessaloniki Thessaloniki, Greece.

PMID: 26539070 PMCID: PMC4611062 DOI: 10.3389/fnins.2015.00350

Abstract

The detection of mild cognitive impairment (MCI), the transitional stage between normal cognitive changes of aging and the cognitive decline caused by AD, is of paramount clinical importance, since MCI patients are at increased risk of progressing into AD. Electroencephalographic (EEG) alterations in the spectral content of brainwaves and connectivity at resting state have been associated with early-stage AD. Recently, cognitive event-related potentials (ERPs) have entered into the picture as an easy to perform screening test. Motivated by the recent findings about the role of cross-frequency coupling (CFC) in cognition, we introduce a relevant methodological approach for detecting MCI based on cognitive responses from a standard auditory oddball paradigm. By using the single trial signals recorded at Pz sensor and comparing the responses to target and non-target stimuli, we first demonstrate that increased CFC is associated with the cognitive task. Then, considering the dynamic character of CFC, we identify instances during which the coupling between particular pairs of brainwave frequencies carries sufficient information for discriminating between normal subjects and patients with MCI. In this way, we form a multiparametric signature of impaired cognition. The new composite biomarker was tested using data from a cohort that consists of 25 amnestic MCI patients and 15 age-matched controls. Standard machine-learning algorithms were employed so as to implement the binary classification task. Based on leave-one-out cross-validation, the measured classification rate was found reaching very high levels (95%). Our approach compares favorably with the traditional alternative of using the morphology of averaged ERP response to make the diagnosis and the usage of features from spectro-temporal analysis of single-trial responses. This further indicates that task-related CFC measurements can provide invaluable analytics in AD diagnosis and prognosis.

Keywords: ERPs; cognitive impairment; connectomic biomarkers; dynamic coordination; dynome; functional connectomics; phase-amplitude coupling

References

  1. Brain Topogr. 2013 Jul;26(3):397-409 - PubMed
  2. Biol Psychiatry. 1994 Jun 1;35(11):870-9 - PubMed
  3. J Clin Neurophysiol. 2007 Oct;24(5):405-12 - PubMed
  4. Science. 1973 Oct 12;182(4108):177-80 - PubMed
  5. Front Aging Neurosci. 2015 Mar 11;7:26 - PubMed
  6. Behav Neurol. 2014;2014:268967 - PubMed
  7. Nat Rev Neurosci. 2001 Apr;2(4):229-39 - PubMed
  8. J Neurosci Methods. 2012 May 30;207(1):41-50 - PubMed
  9. Brain Connect. 2012;2(1):21-4 - PubMed
  10. Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3228-33 - PubMed
  11. Trends Cogn Sci. 2007 Jul;11(7):267-9 - PubMed
  12. Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20942-7 - PubMed
  13. Neuroimage Clin. 2013 Jul 17;3:39-46 - PubMed
  14. J Neurosci Methods. 2010 Oct 30;193(1):145-55 - PubMed
  15. Adv Exp Med Biol. 2015 ;821:63-77 - PubMed
  16. Int J Psychophysiol. 2008 Oct;70(1):23-32 - PubMed
  17. Curr Alzheimer Res. 2005 Dec;2(5):515-25 - PubMed
  18. Suppl Clin Neurophysiol. 2013;62:237-73 - PubMed
  19. J Neurosci Methods. 2008 Mar 15;168(2):494-9 - PubMed
  20. Front Comput Neurosci. 2013 Jul 03;7:78 - PubMed
  21. Nat Neurosci. 2014 May;17(5):652-60 - PubMed
  22. Science. 1980 Nov 14;210(4471):803-5 - PubMed
  23. Psychophysiology. 2002 Mar;39(2):175-81 - PubMed
  24. Front Hum Neurosci. 2010 Oct 19;4:191 - PubMed
  25. Clin Neurophysiol. 2011 Jul;122(7):1322-6 - PubMed
  26. Neuroimage Clin. 2013 May 19;2:735-45 - PubMed
  27. Neurobiol Aging. 2015 Apr;36(4):1611-8 - PubMed
  28. Trends Cogn Sci. 2010 Nov;14(11):506-15 - PubMed
  29. Schizophr Bull. 2008 Sep;34(5):974-80 - PubMed
  30. Clin Neurophysiol. 2007 Oct;118(10):2128-48 - PubMed
  31. J Alzheimers Dis. 2012;28(2):357-67 - PubMed
  32. Clin Neurophysiol. 2015 Nov;126(11):2043-4 - PubMed
  33. Electroencephalogr Clin Neurophysiol. 1997 Mar;104(2):151-6 - PubMed
  34. Brain. 2007 Mar;130(Pt 3):740-52 - PubMed
  35. Clin Neurophysiol. 2002 Jan;113(1):151-61 - PubMed
  36. Electroencephalogr Clin Neurophysiol. 1975 May;38(5):449-61 - PubMed
  37. N Engl J Med. 2014 Jan 23;370(4):311-21 - PubMed
  38. Cogn Neurodyn. 2012 Feb;6(1):107-13 - PubMed
  39. Nature. 2009 Nov 19;462(7271):353-7 - PubMed
  40. Neurobiol Aging. 2010 Oct;31(10):1787-98 - PubMed
  41. Front Aging Neurosci. 2015 Apr 22;7:50 - PubMed
  42. Acta Otolaryngol. 2004 May;124(4):376-80 - PubMed
  43. Nat Rev Neurosci. 2014 Oct;15(10):683-95 - PubMed
  44. Arch Neurol. 1999 Mar;56(3):303-8 - PubMed
  45. Trends Cogn Sci. 2003 May;7(5):207-213 - PubMed
  46. Comput Math Methods Med. 2012;2012:452503 - PubMed
  47. Clin Neurophysiol. 2010 Feb;121(2):194-9 - PubMed
  48. Arch Neurol. 2005 Jul;62(7):1160-3; discussion 1167 - PubMed
  49. J Clin Neurophysiol. 1992 Oct;9(4):456-79 - PubMed
  50. J Cogn Neurosci. 2009 Feb;21(2):390-402 - PubMed
  51. Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20517-22 - PubMed
  52. PLoS One. 2013 Aug 27;8(8):e72240 - PubMed
  53. Cogn Neurodyn. 2015 Aug;9(4):371-87 - PubMed
  54. Neuroimage. 2008 Mar 1;40(1):308-17 - PubMed
  55. J Clin Neurophysiol. 2001 Nov;18(6):570-5 - PubMed
  56. J Psychiatr Res. 1975 Nov;12(3):189-98 - PubMed
  57. J Neurophysiol. 2010 Aug;104(2):1195-210 - PubMed
  58. J Alzheimers Dis. 2014;39(3):679-90 - PubMed
  59. Int J Alzheimers Dis. 2011 Apr 13;2011:539621 - PubMed
  60. Cochrane Database Syst Rev. 2013 Jun 05;(6):CD003260 - PubMed
  61. Neurobiol Aging. 2012 Jul;33(7):1203-14 - PubMed
  62. Int J Alzheimers Dis. 2010 Sep 20;2011:null - PubMed
  63. Ann N Y Acad Sci. 1984;425:24-38 - PubMed
  64. J Neurosci Methods. 2013 Jan 30;212(2):344-54 - PubMed
  65. Neurosci Lett. 2010 Oct 8;483(1):11-5 - PubMed
  66. Dialogues Clin Neurosci. 2012 Dec;14(4):345-67 - PubMed
  67. J Neural Transm (Vienna). 2006 Nov;113(11):1779-86 - PubMed
  68. Nonlinear Dynamics Psychol Life Sci. 2012 Jan;16(1):5-22 - PubMed
  69. Behav Neurol. 2012;25(1):3-11 - PubMed
  70. J Neurosci. 2012 Jan 11;32(2):423-35 - PubMed
  71. Front Aging Neurosci. 2013 Dec 13;5:86 - PubMed
  72. Curr Alzheimer Res. 2010 Sep;7(6):487-505 - PubMed
  73. Alzheimers Dement. 2008 Jan;4(1 Suppl 1):S137-43 - PubMed
  74. J Neurosci Methods. 2007 Apr 15;161(2):342-50 - PubMed
  75. Front Aging Neurosci. 2015 Apr 20;7:54 - PubMed
  76. J Neural Transm (Vienna). 2010 Apr;117(4):489-98 - PubMed
  77. IEEE Trans Biomed Eng. 2008 Sep;55(9):2171-9 - PubMed
  78. Psychophysiology. 1993 Jan;30(1):90-7 - PubMed
  79. PLoS One. 2008;3(12):e3990 - PubMed
  80. Alzheimers Dement. 2014 Nov;10(6):790-8 - PubMed
  81. Ann Biomed Eng. 2015 Apr;43(4):977-89 - PubMed
  82. Philos Trans A Math Phys Eng Sci. 2015 Feb 13;373(2034):null - PubMed
  83. Neuron. 2014 Sep 17;83(6):1319-28 - PubMed
  84. J Neurol Neurosurg Psychiatry. 2002 Oct;73(4):377-84 - PubMed
  85. J Intern Med. 2004 Sep;256(3):240-6 - PubMed
  86. IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1798-828 - PubMed
  87. Mol Psychiatry. 2012 Nov;17 (11):1056-76 - PubMed
  88. Suppl Clin Neurophysiol. 2013;62:19-54 - PubMed
  89. Science. 2004 Jun 25;304(5679):1926-9 - PubMed
  90. Neurobiol Aging. 2000 Jul-Aug;21(4):533-40 - PubMed
  91. BMC Neurosci. 2008 Nov 05;9:107 - PubMed
  92. IEEE Trans Biomed Eng. 2006 Aug;53(8):1557-68 - PubMed
  93. Int J Med Sci. 2005;2(4):147-54 - PubMed
  94. Clin Neurophysiol. 2001 Apr;112(4):698-712 - PubMed
  95. J Cogn Neurosci. 2009 May;21(5):875-89 - PubMed
  96. Int J Alzheimers Dis. 2012;2012:917537 - PubMed
  97. Prog Brain Res. 2011;193:335-50 - PubMed
  98. Acta Psychol (Amst). 1978 Jul;42(4):313-29 - PubMed
  99. Neuroimage. 2013 Dec;83:307-17 - PubMed
  100. J Neurosci. 1998 Dec 15;18(24):10688-99 - PubMed
  101. Electroencephalogr Clin Neurophysiol. 1998 Mar;106(3):229-37 - PubMed
  102. Int J Psychophysiol. 2002 May;44(2):143-63 - PubMed
  103. BMC Psychiatry. 2011 May 04;11:74 - PubMed
  104. J Alzheimers Dis. 2013;34(3):769-80 - PubMed
  105. Age (Dordr). 2012 Apr;34(2):497-506 - PubMed
  106. Neuron. 2010 Feb 25;65(4):541-9 - PubMed
  107. Brain. 2004 Feb;127(Pt 2):431-8 - PubMed

Publication Types