Display options
Share it on

Front Neuroanat. 2015 Oct 20;9:132. doi: 10.3389/fnana.2015.00132. eCollection 2015.

Mapping the mosaic sequence of primate visual cortical development.

Frontiers in neuroanatomy

Inaki-Carril Mundinano, William Chin Kwan, James A Bourne

Affiliations

  1. Bourne Group, Australian Regenerative Medicine Institute, Monash University Melbourne, VIC, Australia.

PMID: 26539084 PMCID: PMC4611065 DOI: 10.3389/fnana.2015.00132

Abstract

Traditional "textbook" theory suggests that the development and maturation of visual cortical areas occur as a wave from V1. However, more recent evidence would suggest that this is not the case, and the emergence of extrastriate areas occurs in a non-hierarchical fashion. This proposition comes from both physiological and anatomical studies but the actual developmental sequence of extrastriate areas remains unknown. In the current study, we examined the development and maturation of the visual cortex of the marmoset monkey, a New World simian, from embryonic day 130 (15 days prior to birth) through to adulthood. Utilizing the well-described expression characteristics of the calcium-binding proteins calbindin and parvalbumin, and nonphosphorylated neurofilament for the pyramidal neurons, we were able to accurately map the sequence of development and maturation of the visual cortex. To this end, we demonstrated that both V1 and middle temporal area (MT) emerge first and that MT likely supports dorsal stream development while V1 supports ventral stream development. Furthermore, the emergence of the dorsal stream-associated areas was significantly earlier than ventral stream areas. The difference in the temporal development of the visual streams is likely driven by a teleological requirement for specific visual behavior in early life.

Keywords: cortex; development; interneuron; marmoset; maturation; visual streams

References

  1. Exp Brain Res. 1991;84(2):233-53 - PubMed
  2. J Neurosci. 2012 Jan 4;32(1):331-43 - PubMed
  3. J Comp Neurol. 1994 Jan 22;339(4):519-34 - PubMed
  4. Cereb Cortex. 1996 Mar-Apr;6(2):184-95 - PubMed
  5. J Neurosci. 2012 Nov 28;32(48):17073-85 - PubMed
  6. Curr Biol. 2010 Mar 9;20(5):411-5 - PubMed
  7. Cereb Cortex. 2013 May;23(5):1126-47 - PubMed
  8. J Comp Neurol. 1991 May 22;307(4):626-46 - PubMed
  9. Nature. 2000 Mar 9;404(6774):183-6 - PubMed
  10. Cereb Cortex. 1991 Jan-Feb;1(1):1-47 - PubMed
  11. Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5837-42 - PubMed
  12. Cereb Cortex. 2005 Jun;15(6):740-8 - PubMed
  13. J Comp Neurol. 2005 May 30;486(2):179-96 - PubMed
  14. Cell. 2008 Aug 8;134(3):508-20 - PubMed
  15. Brain Struct Funct. 2015 Nov;220(6):3245-58 - PubMed
  16. Vision Res. 2011 Jul 1;51(13):1588-609 - PubMed
  17. Dev Med Child Neurol. 2013 Nov;55 Suppl 4:9-12 - PubMed
  18. J Comp Neurol. 2007 Feb 10;500(5):832-49 - PubMed
  19. J Anat. 2010 Oct;217(4):449-68 - PubMed
  20. J Comp Neurol. 2009 Jan 10;512(2):218-31 - PubMed
  21. Neuron. 2012 Jan 12;73(1):159-70 - PubMed
  22. J Neurosci. 2009 Apr 8;29(14):4548-63 - PubMed
  23. Front Neural Circuits. 2013 Mar 08;7:31 - PubMed
  24. Cereb Cortex. 2006 Sep;16(9):1361-75 - PubMed
  25. Annu Rev Neurosci. 2003;26:441-83 - PubMed
  26. Trends Neurosci. 2005 Oct;28(10):512-7 - PubMed
  27. Science. 1996 Nov 15;274(5290):1133-8 - PubMed
  28. Vision Res. 2012 Jun 15;63:34-42 - PubMed
  29. Vis Neurosci. 1998 Jul-Aug;15(4):625-42 - PubMed
  30. Brain Res Dev Brain Res. 1996 Oct 23;96(1-2):261-76 - PubMed
  31. Proc Natl Acad Sci U S A. 2004 May 25;101(21):8174-9 - PubMed
  32. J Comp Neurol. 1996 Dec 2;376(1):112-27 - PubMed
  33. Nat Neurosci. 2004 Nov;7(11):1184-6 - PubMed
  34. Cell. 1999 Sep 17;98(6):739-55 - PubMed
  35. J Comp Neurol. 1998 Jul 6;396(3):381-98 - PubMed
  36. Nature. 2009 Jun 4;459(7247):698-702 - PubMed
  37. Nat Methods. 2012 Jun 28;9(7):676-82 - PubMed
  38. Brain Res. 1986 Dec;395(2):157-68 - PubMed
  39. Curr Opin Neurobiol. 2014 Feb;24(1):166-75 - PubMed
  40. J Neurosci. 2005 May 11;25(19):4755-65 - PubMed
  41. J Comp Neurol. 1988 Feb 8;268(2):234-47 - PubMed
  42. Behav Brain Funct. 2011 Jan 04;7:1 - PubMed
  43. Neuropsychologia. 2003;41(13):1769-84 - PubMed
  44. J Neurocytol. 2002 Mar-Jun;31(3-5):317-35 - PubMed
  45. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2671-5 - PubMed
  46. Curr Opin Neurobiol. 2001 Aug;11(4):498-504 - PubMed
  47. Trends Neurosci. 1992 Jan;15(1):20-5 - PubMed
  48. Exp Brain Res. 2003 May;150(1):19-24 - PubMed
  49. Nature. 2012 Oct 11;490(7419):219-25 - PubMed
  50. Cereb Cortex. 2003 Sep;13(9):932-42 - PubMed
  51. Curr Biol. 2015 Feb 16;25(4):424-34 - PubMed
  52. Front Neuroanat. 2010 Feb 12;4:8 - PubMed
  53. Cereb Cortex. 2006 Mar;16(3):405-14 - PubMed
  54. Braz J Med Biol Res. 2002 Dec;35(12):1485-98 - PubMed
  55. Front Neuroanat. 2014 Aug 12;8:78 - PubMed
  56. Brain Res Brain Res Rev. 1997 Apr;23(3):237-56 - PubMed

Publication Types