Display options
Share it on

Front Cell Neurosci. 2015 Nov 06;9:432. doi: 10.3389/fncel.2015.00432. eCollection 2015.

Non-linear leak currents affect mammalian neuron physiology.

Frontiers in cellular neuroscience

Shiwei Huang, Sungho Hong, Erik De Schutter

Affiliations

  1. Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University Okinawa, Japan.

PMID: 26594148 PMCID: PMC4635211 DOI: 10.3389/fncel.2015.00432

Abstract

In their seminal works on squid giant axons, Hodgkin, and Huxley approximated the membrane leak current as Ohmic, i.e., linear, since in their preparation, sub-threshold current rectification due to the influence of ionic concentration is negligible. Most studies on mammalian neurons have made the same, largely untested, assumption. Here we show that the membrane time constant and input resistance of mammalian neurons (when other major voltage-sensitive and ligand-gated ionic currents are discounted) varies non-linearly with membrane voltage, following the prediction of a Goldman-Hodgkin-Katz-based passive membrane model. The model predicts that under such conditions, the time constant/input resistance-voltage relationship will linearize if the concentration differences across the cell membrane are reduced. These properties were observed in patch-clamp recordings of cerebellar Purkinje neurons (in the presence of pharmacological blockers of other background ionic currents) and were more prominent in the sub-threshold region of the membrane potential. Model simulations showed that the non-linear leak affects voltage-clamp recordings and reduces temporal summation of excitatory synaptic input. Together, our results demonstrate the importance of trans-membrane ionic concentration in defining the functional properties of the passive membrane in mammalian neurons as well as other excitable cells.

Keywords: Goldman-Hodgkin-Katz equation; cerebellar Purkinje neurons; ionic concentration-dependence; passive membrane properties; time constant and input resistance

References

  1. J Neurophysiol. 1994 Jan;71(1):375-400 - PubMed
  2. Neuron. 2011 Dec 22;72(6):899-911 - PubMed
  3. Neural Comput. 2000 May;12(5):995-1007 - PubMed
  4. Nat Rev Neurosci. 2007 Dec;8(12):935-47 - PubMed
  5. J Neurophysiol. 2000 May;83(5):3177-82 - PubMed
  6. Neural Comput. 2005 Apr;17(4):903-21 - PubMed
  7. Biophys J. 1969 Dec;9(12):1483-508 - PubMed
  8. Front Cell Neurosci. 2013 Apr 23;7:48 - PubMed
  9. Eur J Neurosci. 2005 Mar;21(6):1648-58 - PubMed
  10. J Neurosci. 1995 May;15(5 Pt 1):3640-52 - PubMed
  11. Annu Rev Physiol. 2005;67:779-807 - PubMed
  12. J Neurosci. 2006 Apr 26;26(17):4602-12 - PubMed
  13. J Physiol. 1959 Oct;148:127-60 - PubMed
  14. Am J Physiol. 1986 Feb;250(2 Pt 1):C333-9 - PubMed
  15. J Vis Exp. 2014 Oct 30;(92):e52068 - PubMed
  16. Nat Neurosci. 1999 Sep;2(9):848 - PubMed
  17. J Physiol. 2006 Oct 1;576(Pt 1):203-14 - PubMed
  18. J Neurophysiol. 1998 Aug;80(2):903-13 - PubMed
  19. J Neurophysiol. 2003 Dec;90(6):3998-4015 - PubMed
  20. Am J Physiol. 1982 Dec;243(6):F519-31 - PubMed
  21. J Physiol. 2001 Sep 1;535(Pt 2):445-72 - PubMed
  22. J Gen Physiol. 1943 Sep 20;27(1):37-60 - PubMed
  23. J Neurophysiol. 2013 Jul;110(1):257-68 - PubMed
  24. J Physiol. 2003 Apr 1;548(Pt 1):53-69 - PubMed
  25. Nature. 1999 Jan 21;397(6716):251-5 - PubMed
  26. J R Soc Interface. 2008 Dec 6;5(29):1421-8 - PubMed
  27. J Biol Chem. 1996 Jul 5;271(27):16245-52 - PubMed
  28. J Physiol. 1952 Aug;117(4):500-44 - PubMed
  29. Front Neuroinform. 2009 Jan 28;3:1 - PubMed
  30. PLoS One. 2011 Feb 11;6(2):e16803 - PubMed
  31. J Cell Physiol. 1987 Feb;130(2):191-8 - PubMed
  32. Nature. 1995 Jun 15;375(6532):599-603 - PubMed
  33. EMBO J. 2012 Mar 7;31(5):1217-30 - PubMed
  34. Front Cell Neurosci. 2009 Dec 23;3:20 - PubMed
  35. J Physiol. 1991 Dec;444:499-511 - PubMed
  36. J Physiol. 1996 Dec 15;497 ( Pt 3):753-9 - PubMed
  37. Compr Physiol. 2012 Jul;2(3):2087-149 - PubMed
  38. J Neurosci. 1994 Aug;14(8):4613-38 - PubMed
  39. J Neurosci. 2007 Feb 7;27(6):1445-55 - PubMed
  40. J Neurosci. 2003 Jun 15;23(12):4899-912 - PubMed
  41. Front Cell Neurosci. 2012 Feb 21;6:5 - PubMed
  42. J Neurosci. 2007 Aug 8;27(32):8643-53 - PubMed
  43. Biophys J. 1974 Oct;14(10):759-90 - PubMed
  44. Trends Neurosci. 2004 May;27(5):262-9 - PubMed
  45. J Physiol. 1949 Mar 1;108(1):37-77 - PubMed

Publication Types