Display options
Share it on

Epigenetics Chromatin. 2015 Nov 24;8:48. doi: 10.1186/s13072-015-0042-4. eCollection 2015.

CBP binding outside of promoters and enhancers in Drosophila melanogaster.

Epigenetics & chromatin

Philge Philip, Ann Boija, Roshan Vaid, Allison M Churcher, David J Meyers, Philip A Cole, Mattias Mannervik, Per Stenberg

Affiliations

  1. Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden ; Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden ; Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, Telangana 500007 India.
  2. Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden.
  3. Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
  4. Department Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205 USA.
  5. Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden ; Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden ; Division of CBRN Security and Defence, FOI-Swedish Defence Research Agency, Umeå, Sweden.

PMID: 26604986 PMCID: PMC4657240 DOI: 10.1186/s13072-015-0042-4

Abstract

BACKGROUND: CREB-binding protein (CBP, also known as nejire) is a transcriptional co-activator that is conserved in metazoans. CBP plays an important role in embryonic development and cell differentiation and mutations in CBP can lead to various diseases in humans. In addition, CBP and the related p300 protein have successfully been used to predict enhancers in both humans and flies when they occur with monomethylation of histone H3 on lysine 4 (H3K4me1).

RESULTS: Here, we compare CBP chromatin immunoprecipitation sequencing data from Drosophila S2 cells with modENCODE data and show that CBP is bound at genomic sites with a wide range of functions. As expected, we find that CBP is bound at active promoters and enhancers. In addition, we find that the strongest CBP sites in the genome are found at Polycomb response elements embedded in histone H3 lysine 27 trimethylated (H3K27me3) chromatin, where they correlate with binding of the Pho repressive complex. Interestingly, we find that CBP also binds to most insulators in the genome. At a subset of these, CBP may regulate insulating activity, measured as the ability to prevent repressive H3K27 methylation from spreading into adjacent chromatin.

CONCLUSIONS: We conclude that CBP could be involved in a much wider range of functions than has previously been appreciated, including Polycomb repression and insulator activity. In addition, we discuss the possibility that a common role for CBP at all functional elements may be to regulate interactions between distant chromosomal regions and speculate that CBP is controlling higher order chromatin organization.

Keywords: CBP/p300; Chromatin structure; Drosophila melanogaster; Gene regulation; Insulators; Polycomb response elements

References

  1. Nat Genet. 2007 Mar;39(3):311-8 - PubMed
  2. Science. 2001 Nov 9;294(5545):1331-4 - PubMed
  3. Dev Biol. 2007 May 15;305(2):650-8 - PubMed
  4. Transcription. 2013 Jan-Feb;4(1):18-23 - PubMed
  5. Genes Dev. 2000 Jul 1;14(13):1553-77 - PubMed
  6. Nature. 2011 Mar 24;471(7339):473-9 - PubMed
  7. Annu Rev Biochem. 2010;79:89-130 - PubMed
  8. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8 - PubMed
  9. Nat Rev Genet. 2013 Dec;14(12):853-64 - PubMed
  10. Nucleic Acids Res. 2009 Jan;37(Database issue):D555-9 - PubMed
  11. Development. 2012 Oct;139(20):3880-90 - PubMed
  12. Genes Dev. 2014 Dec 15;28(24):2750-63 - PubMed
  13. Chromosoma. 2008 Feb;117(1):89-102 - PubMed
  14. Epigenetics. 2010 Jan 1;5(1):9-15 - PubMed
  15. Chem Biol. 2010 May 28;17(5):471-82 - PubMed
  16. Cell. 2009 Sep 4;138(5):1019-31 - PubMed
  17. Nucleic Acids Res. 2009 Jan;37(1):1-13 - PubMed
  18. Oncogene. 2004 May 24;23(24):4225-31 - PubMed
  19. Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6 - PubMed
  20. Genes Dev. 2009 Jul 1;23(13):1505-9 - PubMed
  21. Science. 2013 Mar 1;339(6123):1074-7 - PubMed
  22. Development. 2009 Sep;136(18):3131-41 - PubMed
  23. Nature. 2009 May 7;459(7243):113-7 - PubMed
  24. PLoS Genet. 2012;8(6):e1002769 - PubMed
  25. PLoS One. 2012;7(7):e40565 - PubMed
  26. Development. 2014 Mar;141(5):1129-39 - PubMed
  27. Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2294-9 - PubMed
  28. Science. 2010 Dec 24;330(6012):1787-97 - PubMed
  29. Nucleic Acids Res. 2010 Aug;38(15):4958-69 - PubMed
  30. Expert Rev Mol Med. 2007 Aug 20;9(23):1-16 - PubMed
  31. BMC Genomics. 2012 Mar 19;13:97 - PubMed
  32. Mol Cell. 2015 Feb 5;57(3):559-71 - PubMed
  33. EMBO J. 2013 Dec 11;32(24):3119-29 - PubMed
  34. PLoS Genet. 2010 Jan 15;6(1):e1000814 - PubMed
  35. Nature. 2009 Feb 12;457(7231):854-8 - PubMed
  36. Genome Res. 2011 Aug;21(8):1273-83 - PubMed
  37. Mol Cell Biol. 1992 Jun;12(6):2826-36 - PubMed
  38. Epigenetics Chromatin. 2012 Jan 09;5(1):1 - PubMed
  39. Nature. 2011 Feb 10;470(7333):279-83 - PubMed
  40. Mol Cell Biol. 2007 Jan;27(1):135-46 - PubMed
  41. Genome Res. 2014 Jul;24(7):1147-56 - PubMed
  42. Dev Biol. 2003 Oct 15;262(2):294-302 - PubMed
  43. Nat Protoc. 2009;4(1):44-57 - PubMed
  44. PLoS Genet. 2010 Jan;6(1):e1000805 - PubMed
  45. Nature. 2014 Aug 7;512(7512):91-5 - PubMed
  46. Genome Res. 2012 Nov;22(11):2188-98 - PubMed
  47. Development. 2011 Sep;138(18):4097-106 - PubMed
  48. Cell. 2013 Mar 28;153(1):38-55 - PubMed
  49. Curr Opin Struct Biol. 2008 Dec;18(6):741-7 - PubMed

Publication Types

Grant support