Display options
Share it on

Front Bioeng Biotechnol. 2015 Nov 17;3:182. doi: 10.3389/fbioe.2015.00182. eCollection 2015.

Potential for Genetic Improvement of Sugarcane as a Source of Biomass for Biofuels.

Frontiers in bioengineering and biotechnology

Nam V Hoang, Agnelo Furtado, Frederik C Botha, Blake A Simmons, Robert J Henry

Affiliations

  1. Queensland Alliance for Agriculture and Food Innovation, The University of Queensland , St. Lucia, QLD , Australia ; College of Agriculture and Forestry, Hue University , Hue , Vietnam.
  2. Queensland Alliance for Agriculture and Food Innovation, The University of Queensland , St. Lucia, QLD , Australia.
  3. Queensland Alliance for Agriculture and Food Innovation, The University of Queensland , St. Lucia, QLD , Australia ; Sugar Research Australia , Indooroopilly, QLD , Australia.
  4. Queensland Alliance for Agriculture and Food Innovation, The University of Queensland , St. Lucia, QLD , Australia ; Joint BioEnergy Institute , Emeryville, CA , USA.

PMID: 26636072 PMCID: PMC4646955 DOI: 10.3389/fbioe.2015.00182

Abstract

Sugarcane (Saccharum spp. hybrids) has great potential as a major feedstock for biofuel production worldwide. It is considered among the best options for producing biofuels today due to an exceptional biomass production capacity, high carbohydrate (sugar + fiber) content, and a favorable energy input/output ratio. To maximize the conversion of sugarcane biomass into biofuels, it is imperative to generate improved sugarcane varieties with better biomass degradability. However, unlike many diploid plants, where genetic tools are well developed, biotechnological improvement is hindered in sugarcane by our current limited understanding of the large and complex genome. Therefore, understanding the genetics of the key biofuel traits in sugarcane and optimization of sugarcane biomass composition will advance efficient conversion of sugarcane biomass into fermentable sugars for biofuel production. The large existing phenotypic variation in Saccharum germplasm and the availability of the current genomics technologies will allow biofuel traits to be characterized, the genetic basis of critical differences in biomass composition to be determined, and targets for improvement of sugarcane for biofuels to be established. Emerging options for genetic improvement of sugarcane for the use as a bioenergy crop are reviewed. This will better define the targets for potential genetic manipulation of sugarcane biomass composition for biofuels.

Keywords: association studies; biofuel traits; biofuels; biomass for biofuels; sugarcane

References

  1. Mol Genet Genomics. 2010 Jul;284(1):65-73 - PubMed
  2. Trends Plant Sci. 2008 Aug;13(8):421-9 - PubMed
  3. Plant Biotechnol J. 2012 Aug;10(6):657-67 - PubMed
  4. Theor Appl Genet. 2014 Aug;127(8):1719-32 - PubMed
  5. Ann Bot. 2007 Nov;100(5):975-89 - PubMed
  6. J Biosci. 2012 Nov;37(5):829-41 - PubMed
  7. Theor Appl Genet. 1999 Aug;99(3-4):419-24 - PubMed
  8. Nat Rev Genet. 2005 Feb;6(2):95-108 - PubMed
  9. Planta. 2013 Oct;238(4):627-42 - PubMed
  10. Genome. 2010 Nov;53(11):973-81 - PubMed
  11. Plant J. 2007 May;50(4):574-85 - PubMed
  12. Theor Appl Genet. 2002 Jan;104(1):30-8 - PubMed
  13. Funct Integr Genomics. 2007 Apr;7(2):153-67 - PubMed
  14. BMC Res Notes. 2012 Apr 23;5:185 - PubMed
  15. Curr Opin Biotechnol. 2006 Jun;17(3):315-9 - PubMed
  16. Curr Opin Plant Biol. 2008 Jun;11(3):301-7 - PubMed
  17. Brief Funct Genomics. 2010 Mar;9(2):157-65 - PubMed
  18. Funct Integr Genomics. 2010 May;10(2):207-14 - PubMed
  19. Am J Bot. 2012 Feb;99(2):365-71 - PubMed
  20. Plant Physiol. 1999 Apr;119(4):1187-98 - PubMed
  21. BMC Genomics. 2009 Nov 20;10:547 - PubMed
  22. Science. 2007 Feb 9;315(5813):804-7 - PubMed
  23. Curr Opin Biotechnol. 2012 Jun;23(3):315-22 - PubMed
  24. Trends Plant Sci. 2004 Jul;9(7):325-30 - PubMed
  25. Biotechnol Biofuels. 2010 Dec 02;3:27 - PubMed
  26. Genome. 2004 Oct;47(5):795-804 - PubMed
  27. Plant Physiol. 1997 Dec;115(4):1651-1659 - PubMed
  28. J Exp Bot. 2013 Jul;64(10):3021-32 - PubMed
  29. Plant Biotechnol J. 2010 Apr;8(3):244-62 - PubMed
  30. Trends Biotechnol. 2008 Aug;26(8):413-24 - PubMed
  31. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:445-476 - PubMed
  32. Plant Biotechnol J. 2014 Dec;12(9):1246-58 - PubMed
  33. Curr Opin Biotechnol. 2012 Apr;23(2):265-70 - PubMed
  34. Bioresour Technol. 2010 Jul;101(13):4980-91 - PubMed
  35. Plant Biotechnol J. 2010 Apr;8(3):288-93 - PubMed
  36. Plant Cell Rep. 2004 Sep;23 (3):134-43 - PubMed
  37. Plant Physiol. 2013 Dec;163(4):1539-57 - PubMed
  38. Mol Gen Genet. 1996 Mar 7;250(4):405-13 - PubMed
  39. Theor Appl Genet. 2004 Mar;108(5):851-63 - PubMed
  40. Curr Opin Plant Biol. 2008 Jun;11(3):252-7 - PubMed
  41. Genome Res. 2001 Dec;11(12):2075-84 - PubMed
  42. Genome Res. 2003 Dec;13(12):2725-35 - PubMed
  43. Plant Mol Biol. 2004 Mar;54(4):503-17 - PubMed
  44. Genet Mol Res. 2010 Mar 16;9(1):471-83 - PubMed
  45. Theor Appl Genet. 2005 Mar;110(5):789-801 - PubMed
  46. PLoS One. 2015 May 04;10(5):e0125810 - PubMed
  47. Mol Plant. 2009 Sep;2(5):861-72 - PubMed
  48. Nature. 2009 Jan 29;457(7229):551-6 - PubMed
  49. Sci Rep. 2013 Dec 02;3:3399 - PubMed
  50. Front Plant Sci. 2012 Apr 23;3:74 - PubMed
  51. Curr Opin Plant Biol. 2002 Apr;5(2):122-7 - PubMed
  52. Front Plant Sci. 2013 Oct 01;4:383 - PubMed
  53. Theor Appl Genet. 2008 Mar;116(5):701-14 - PubMed
  54. Plant Mol Biol. 2013 Jan;81(1-2):139-47 - PubMed
  55. PLoS One. 2011 Jan 27;6(1):e16416 - PubMed
  56. PLoS One. 2014 Feb 11;9(2):e88462 - PubMed
  57. PLoS One. 2014 Dec 09;9(12):e114744 - PubMed
  58. Plant Biotechnol J. 2010 Apr;8(3):263-76 - PubMed
  59. Trends Genet. 2014 Sep;30(9):418-26 - PubMed
  60. Genome Biol. 2013 Jun 27;14(6):210 - PubMed
  61. Plant Biotechnol J. 2012 Dec;10(9):1067-76 - PubMed
  62. Plant Cell. 1995 Jul;7(7):1001-1013 - PubMed
  63. Biotechnol Biofuels. 2015 Mar 12;8:44 - PubMed
  64. Nat Biotechnol. 2007 Jul;25(7):759-61 - PubMed
  65. BMC Genomics. 2011 May 19;12:246 - PubMed
  66. Sci Rep. 2014 Nov 13;4:7042 - PubMed
  67. Theor Appl Genet. 2013 Jan;126(1):1-11 - PubMed
  68. Theor Appl Genet. 2003 Jan;106(2):190-7 - PubMed
  69. Theor Appl Genet. 2006 Dec;114(1):155-64 - PubMed
  70. Phytochemistry. 2002 Oct;61(3):221-94 - PubMed
  71. Brief Bioinform. 2007 Jan;8(1):6-21 - PubMed
  72. Curr Opin Plant Biol. 2000 Dec;3(6):523-31 - PubMed
  73. Genetics. 1998 Dec;150(4):1663-82 - PubMed
  74. Theor Appl Genet. 2002 Nov;105(6-7):1027-1037 - PubMed
  75. BMC Genomics. 2014 Feb 24;15:152 - PubMed
  76. BMC Genomics. 2010 Apr 23;11:261 - PubMed
  77. Biotechnol Biofuels. 2012 Apr 13;5:22 - PubMed
  78. New Phytol. 2011 Mar;189(4):909-22 - PubMed
  79. J Exp Bot. 2004 Apr;55(398):847-54 - PubMed
  80. Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4143-4 - PubMed
  81. J Biomed Biotechnol. 2012;2012:989572 - PubMed
  82. Plant Cell Rep. 2011 Mar;30(3):439-48 - PubMed
  83. Plant Mol Biol. 2003 May;52(2):371-86 - PubMed
  84. Plant Biotechnol J. 2011 Oct;9(8):884-96 - PubMed
  85. Bioresour Technol. 2005 Apr;96(6):673-86 - PubMed
  86. Brief Funct Genomics. 2011 Nov;10(6):374-86 - PubMed
  87. Front Plant Sci. 2013 May 03;4:107 - PubMed
  88. Genetics. 2008 Sep;180(1):649-60 - PubMed
  89. Science. 2010 Aug 13;329(5993):790-2 - PubMed
  90. Nat Biotechnol. 1999 Oct;17(10):1021-4 - PubMed
  91. Biotechnol Biofuels. 2013 Mar 20;6(1):39 - PubMed
  92. Biotechnol Biofuels. 2014 Feb 21;7(1):26 - PubMed
  93. Nat Biotechnol. 2006 Jul;24(7):777-84 - PubMed

Publication Types