Display options
Share it on

J Biol Eng. 2015 Dec 22;9:24. doi: 10.1186/s13036-015-0022-z. eCollection 2015.

Heterologous expression of the isopimaric acid pathway in Nicotiana benthamiana and the effect of N-terminal modifications of the involved cytochrome P450 enzyme.

Journal of biological engineering

Thiyagarajan Gnanasekaran, Konstantinos Vavitsas, Johan Andersen-Ranberg, Agnieszka Zygadlo Nielsen, Carl Erik Olsen, Björn Hamberger, Poul Erik Jensen

Affiliations

  1. Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, UNIK Center for Synthetic Biology, Villum Research Center "Plant Plasticity", University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark.
  2. Present address: Plant and Microbial Biology, University of California, 371 Koshland Hall, Berkeley, CA 94720 USA.

PMID: 26702299 PMCID: PMC4688937 DOI: 10.1186/s13036-015-0022-z

Abstract

BACKGROUND: Plant terpenoids are known for their diversity, stereochemical complexity, and their commercial interest as pharmaceuticals, food additives, and cosmetics. Developing biotechnology approaches for the production of these compounds in heterologous hosts can increase their market availability, reduce their cost, and provide sustainable production platforms. In this context, we aimed at producing the antimicrobial diterpenoid isopimaric acid from Sitka spruce. Isopimaric acid is synthesized using geranylgeranyl diphosphate as a precursor molecule that is cyclized by a diterpene synthase in the chloroplast and subsequently oxidized by a cytochrome P450, CYP720B4.

RESULTS: We transiently expressed the isopimaric acid pathway in Nicotiana benthamiana leaves and enhanced its productivity by the expression of two rate-limiting steps in the pathway (providing the general precursor of diterpenes). This co-expression resulted in 3-fold increase in the accumulation of both isopimaradiene and isopimaric acid detected using GC-MS and LC-MS methodology. We also showed that modifying or deleting the transmembrane helix of CYP720B4 does not alter the enzyme activity and led to successful accumulation of isopimaric acid in the infiltrated leaves. Furthermore, we demonstrated that a modified membrane anchor is a prerequisite for a functional CYP720B4 enzyme when the chloroplast targeting peptide is added. We report the accumulation of 45-55 μg/g plant dry weight of isopimaric acid four days after the infiltration with the modified enzymes.

CONCLUSIONS: It is possible to localize a diterpenoid pathway from spruce fully within the chloroplast of N. benthamiana and a few modifications of the N-terminal sequences of the CYP720B4 can facilitate the expression of plant P450s in the plastids. The coupling of terpene biosynthesis closer to photosynthesis paves the way for light-driven biosynthesis of valuable terpenoids.

Keywords: Chloroplasts; Cytochrome P450; Diterpenoids; Isopimaric acid; Protein engineering

References

  1. Curr Opin Plant Biol. 2006 Jun;9(3):297-304 - PubMed
  2. Cell. 1986 Aug 1;46(3):365-75 - PubMed
  3. Chem Commun (Camb). 2011 Mar 7;47(9):2490-501 - PubMed
  4. Proc Natl Acad Sci U S A. 2008 Jan 22;105(3):1085-90 - PubMed
  5. ACS Synth Biol. 2014 Jan 17;3(1):1-12 - PubMed
  6. Plant Physiol. 2014 Jul 1;165(4):1488-1504 - PubMed
  7. J Biol Chem. 2002 Jan 25;277(4):2798-803 - PubMed
  8. Nat Prod Rep. 2012 Oct;29(10):1251-66 - PubMed
  9. Trends Plant Sci. 2012 Feb;17(2):60-3 - PubMed
  10. Plant J. 2003 Mar;33(5):949-56 - PubMed
  11. Biochim Biophys Acta. 2013 Feb;1833(2):245-52 - PubMed
  12. Plant J. 2014 Jun;78(5):783-98 - PubMed
  13. Trends Biotechnol. 2015 Jul;33(7):419-28 - PubMed
  14. ACS Chem Biol. 2011 Jun 17;6(6):533-9 - PubMed
  15. Plant Physiol. 2011 Apr;155(4):1501-10 - PubMed
  16. Annu Rev Plant Biol. 2013;64:665-700 - PubMed
  17. Plant Methods. 2013 Dec 12;9(1):46 - PubMed
  18. J Chem Ecol. 1983 Jan;9(1):119-27 - PubMed
  19. J Inorg Biochem. 2012 Mar;108:150-8 - PubMed
  20. Appl Microbiol Biotechnol. 2014 Mar;98(6):2371-83 - PubMed
  21. Plant Cell. 2010 May;22(5):1605-19 - PubMed
  22. Plant Physiol. 2011 Dec;157(4):1677-95 - PubMed
  23. J Exp Bot. 2015 Dec;66(22):6975-90 - PubMed
  24. Metab Eng. 2016 Jan;33:1-11 - PubMed
  25. Science. 2010 Oct 1;330(6000):70-4 - PubMed
  26. Phytochemistry. 2006 Nov;67(22):2415-23 - PubMed
  27. Plant Biotechnol J. 2009 Sep;7(7):682-93 - PubMed
  28. Philos Trans R Soc Lond B Biol Sci. 2013 Jan 06;368(1612):20120426 - PubMed
  29. New Phytol. 2015 May;206(3):1075-85 - PubMed
  30. Adv Biochem Eng Biotechnol. 2015;148:107-39 - PubMed
  31. PLoS One. 2014 Jul 15;9(7):e102184 - PubMed
  32. Biotechnol J. 2013 Oct;8(10):1159-71 - PubMed
  33. J Biol Chem. 2003 Aug 29;278(35):33276-83 - PubMed
  34. Annu Rev Plant Biol. 2014;65:259-86 - PubMed
  35. J Biotechnol. 2006 Jun 25;124(1):128-45 - PubMed
  36. Nat Rev Mol Cell Biol. 2013 Dec;14(12):787-802 - PubMed
  37. ACS Synth Biol. 2013 Jun 21;2(6):308-15 - PubMed
  38. Trends Biochem Sci. 2013 Mar;38(3):140-50 - PubMed
  39. F1000Prime Rep. 2014 Jun 02;6:40 - PubMed
  40. Plant Physiol. 2001 Jan;125(1):306-17 - PubMed
  41. Plant Physiol. 2009 Sep;151(1):59-66 - PubMed
  42. Nucleic Acids Res. 1988 Aug 11;16(15):7351-67 - PubMed
  43. Nature. 2013 Apr 25;496(7446):528-32 - PubMed
  44. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2651-5 - PubMed
  45. Adv Biochem Eng Biotechnol. 2015;148:427-47 - PubMed
  46. Phytochemistry. 2015 Feb;110:22-8 - PubMed
  47. Phytochemistry. 2007 Nov-Dec;68(22-24):2831-46 - PubMed
  48. Metab Eng. 2015 Mar;28:91-103 - PubMed
  49. Phytother Res. 2005 Jun;19(6):538-42 - PubMed
  50. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5597-601 - PubMed
  51. ACS Synth Biol. 2015 Dec 18;4(12):1270-8 - PubMed
  52. Plant J. 2008 Sep;55(5):857-68 - PubMed

Publication Types