Display options
Share it on

Sci Adv. 2015 Apr 10;1(3):e1500022. doi: 10.1126/sciadv.1500022. eCollection 2015 Apr.

Electrically controlling single-spin qubits in a continuous microwave field.

Science advances

Arne Laucht, Juha T Muhonen, Fahd A Mohiyaddin, Rachpon Kalra, Juan P Dehollain, Solomon Freer, Fay E Hudson, Menno Veldhorst, Rajib Rahman, Gerhard Klimeck, Kohei M Itoh, David N Jamieson, Jeffrey C McCallum, Andrew S Dzurak, Andrea Morello

Affiliations

  1. Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, New South Wales 2052, Australia.
  2. Network for Computational Nanotechnology, Purdue University, West Lafayette, IN 47907, USA.
  3. School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
  4. Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Melbourne, Victoria 3010, Australia.

PMID: 26601166 PMCID: PMC4640634 DOI: 10.1126/sciadv.1500022

Abstract

Large-scale quantum computers must be built upon quantum bits that are both highly coherent and locally controllable. We demonstrate the quantum control of the electron and the nuclear spin of a single (31)P atom in silicon, using a continuous microwave magnetic field together with nanoscale electrostatic gates. The qubits are tuned into resonance with the microwave field by a local change in electric field, which induces a Stark shift of the qubit energies. This method, known as A-gate control, preserves the excellent coherence times and gate fidelities of isolated spins, and can be extended to arbitrarily many qubits without requiring multiple microwave sources.

Keywords: Local electrical control; Magnetic resonance; Phosphorus donor; Quantum computing; Silicon nanoelectronics; Single-atom spin qubits

References

  1. Science. 2013 Mar 8;339(6124):1174-9 - PubMed
  2. Nat Nanotechnol. 2014 Dec;9(12):981-5 - PubMed
  3. J Phys Condens Matter. 2015 Apr 22;27(15):154205 - PubMed
  4. Science. 2014 Jun 6;344(6188):1135-8 - PubMed
  5. Phys Rev Lett. 2013 Apr 5;110(14):146804 - PubMed
  6. Nano Lett. 2013 May 8;13(5):1903-9 - PubMed
  7. Phys Rev Lett. 2014 May 9;112(18):187601 - PubMed
  8. Nature. 2013 Apr 18;496(7445):334-8 - PubMed
  9. Nature. 2010 Oct 7;467(7316):687-91 - PubMed
  10. Nanotechnology. 2013 Jan 11;24(1):015202 - PubMed
  11. Science. 2005 Sep 30;309(5744):2180-4 - PubMed
  12. Phys Rev Lett. 2011 Jan 21;106(3):037601 - PubMed
  13. Phys Rev Lett. 2007 Jul 20;99(3):036403 - PubMed
  14. Nat Nanotechnol. 2014 Dec;9(12):986-91 - PubMed
  15. Nature. 2008 Oct 2;455(7213):648-51 - PubMed
  16. Nat Nanotechnol. 2013 Sep;8(9):654-9 - PubMed
  17. Phys Rev Lett. 2011 Oct 21;107(17):176811 - PubMed
  18. Nat Nanotechnol. 2013 Aug;8(8):565-8 - PubMed
  19. Phys Rev Lett. 2014 Oct 10;113(15):157601 - PubMed
  20. Nature. 2014 Jul 3;511(7507):70-4 - PubMed
  21. Nat Mater. 2015 May;14(5):490-4 - PubMed
  22. Science. 2012 Jun 8;336(6086):1283-6 - PubMed
  23. Nature. 2012 Sep 27;489(7417):541-5 - PubMed
  24. Science. 2007 Nov 30;318(5855):1430-3 - PubMed

Publication Types