Display options
Share it on

Sci Adv. 2015 Jul 31;1(6):e1500222. doi: 10.1126/sciadv.1500222. eCollection 2015 Jul.

Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper.

Science advances

Luca Banszerus, Michael Schmitz, Stephan Engels, Jan Dauber, Martin Oellers, Federica Haupt, Kenji Watanabe, Takashi Taniguchi, Bernd Beschoten, Christoph Stampfer

Affiliations

  1. JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany.
  2. JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074 Aachen, Germany. ; Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany.
  3. JARA-Institute for Quantum Information, RWTH Aachen University, 52056 Aachen, Germany.
  4. National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.

PMID: 26601221 PMCID: PMC4646786 DOI: 10.1126/sciadv.1500222

Abstract

Graphene research has prospered impressively in the past few years, and promising applications such as high-frequency transistors, magnetic field sensors, and flexible optoelectronics are just waiting for a scalable and cost-efficient fabrication technology to produce high-mobility graphene. Although significant progress has been made in chemical vapor deposition (CVD) and epitaxial growth of graphene, the carrier mobility obtained with these techniques is still significantly lower than what is achieved using exfoliated graphene. We show that the quality of CVD-grown graphene depends critically on the used transfer process, and we report on an advanced transfer technique that allows both reusing the copper substrate of the CVD growth and making devices with mobilities as high as 350,000 cm(2) V(-1) s(-1), thus rivaling exfoliated graphene.

Keywords: Chemical vapor deposition (CVD); High carrier mobility; Quantum Transport; graphene; nanoelectronics

References

  1. Nat Nanotechnol. 2010 Oct;5(10):722-6 - PubMed
  2. J Phys Condens Matter. 2013 Dec 18;25(50):505304 - PubMed
  3. Science. 2012 Jun 1;336(6085):1143-6 - PubMed
  4. Phys Rev Lett. 2007 Feb 16;98(7):076602 - PubMed
  5. ACS Nano. 2012 Oct 23;6(10):9110-7 - PubMed
  6. Nano Lett. 2007 Feb;7(2):238-42 - PubMed
  7. Science. 2010 Feb 5;327(5966):662 - PubMed
  8. Science. 2009 Jun 5;324(5932):1312-4 - PubMed
  9. Nano Lett. 2010 Oct 13;10(10):4128-33 - PubMed
  10. Nature. 2012 Oct 11;490(7419):192-200 - PubMed
  11. Nat Nanotechnol. 2013 Apr;8(4):235-46 - PubMed
  12. Nano Lett. 2012 Mar 14;12(3):1448-52 - PubMed
  13. Nat Commun. 2012;3:1024 - PubMed
  14. Nano Lett. 2012 Jun 13;12(6):2751-6 - PubMed
  15. Nat Mater. 2008 May;7(5):406-11 - PubMed
  16. Adv Mater. 2013 Apr 11;25(14):2062-5 - PubMed
  17. Small. 2014 Feb 26;10(4):694-8 - PubMed
  18. ACS Nano. 2011 Jul 26;5(7):6069-76 - PubMed
  19. ACS Nano. 2013 Jul 23;7(7):5763-8 - PubMed
  20. J Am Chem Soc. 2011 Mar 9;133(9):2816-9 - PubMed
  21. Nat Mater. 2009 Mar;8(3):203-7 - PubMed
  22. Science. 2006 May 26;312(5777):1191-6 - PubMed
  23. Nat Nanotechnol. 2010 Aug;5(8):574-8 - PubMed
  24. Science. 2014 Apr 18;344(6181):286-9 - PubMed
  25. Sci Rep. 2014 Jul 07;4:5548 - PubMed
  26. ACS Nano. 2011 Dec 27;5(12):9927-33 - PubMed
  27. ACS Nano. 2011 Sep 27;5(9):6916-24 - PubMed
  28. Science. 2013 Nov 8;342(6159):720-3 - PubMed
  29. Science. 2013 Nov 1;342(6158):614-7 - PubMed
  30. ACS Nano. 2013 Oct 22;7(10):9480-8 - PubMed
  31. Nano Lett. 2015 Mar 11;15(3):1867-75 - PubMed
  32. Phys Rev Lett. 2006 Nov 3;97(18):187401 - PubMed

Publication Types