Display options
Share it on

Sci Adv. 2015 Aug 07;1(7):e1500391. doi: 10.1126/sciadv.1500391. eCollection 2015 Aug.

Why do animal eyes have pupils of different shapes?.

Science advances

Martin S Banks, William W Sprague, Jürgen Schmoll, Jared A Q Parnell, Gordon D Love

Affiliations

  1. Vision Science Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA. ; School of Optometry, University of California, Berkeley, Berkeley, CA 94720, USA.
  2. Vision Science Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA.
  3. Department of Physics and Biophysical Sciences Institute, Durham University, Durham DH1 3LE, UK.

PMID: 26601232 PMCID: PMC4643806 DOI: 10.1126/sciadv.1500391

Abstract

There is a striking correlation between terrestrial species' pupil shape and ecological niche (that is, foraging mode and time of day they are active). Species with vertically elongated pupils are very likely to be ambush predators and active day and night. Species with horizontally elongated pupils are very likely to be prey and to have laterally placed eyes. Vertically elongated pupils create astigmatic depth of field such that images of vertical contours nearer or farther than the distance to which the eye is focused are sharp, whereas images of horizontal contours at different distances are blurred. This is advantageous for ambush predators to use stereopsis to estimate distances of vertical contours and defocus blur to estimate distances of horizontal contours. Horizontally elongated pupils create sharp images of horizontal contours ahead and behind, creating a horizontally panoramic view that facilitates detection of predators from various directions and forward locomotion across uneven terrain.

Keywords: anatomy; aperture; blur; chromatic aberration; depth of field; evolution; eye; pupil; stereopsis

References

  1. J Vis. 2009 Mar 30;9(3):27.1-11 - PubMed
  2. Vision Res. 1996 Apr;36(8):1103-14 - PubMed
  3. Vision Res. 1996 May;36(9):1255-64 - PubMed
  4. Brain Behav Evol. 2008;71(1):54-67 - PubMed
  5. J Exp Biol. 2006 Jan;209(Pt 1):18-25 - PubMed
  6. Vision Res. 1981;21(4):445-55 - PubMed
  7. Science. 2006 Jan 6;311(5757):73-7 - PubMed
  8. Mol Phylogenet Evol. 2005 Dec;37(3):815-31 - PubMed
  9. J Opt Soc Am A. 1993 Feb;10(2):201-12 - PubMed
  10. Nature. 1991 Jul 11;352(6331):156-9 - PubMed
  11. Invest Ophthalmol Vis Sci. 1985 Jul;26(7):917-23 - PubMed
  12. J Opt Soc Am A Opt Image Sci Vis. 2012 Sep 1;29(9):1786-93 - PubMed
  13. Optom Vis Sci. 1989 Aug;66(8):545-53 - PubMed
  14. Ophthalmic Physiol Opt. 1988;8(2):215-20 - PubMed
  15. Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16849-54 - PubMed
  16. Nature. 1977 May 26;267(5609):346-9 - PubMed
  17. Exp Brain Res. 1985;59(3):485-90 - PubMed
  18. Vision Res. 1986;26(5):815-7 - PubMed
  19. Vision Res. 1965 Aug;5(7):455-61 - PubMed
  20. Curr Biol. 2012 Mar 6;22(5):426-31 - PubMed
  21. Vision Res. 2004;44(17):2043-65 - PubMed
  22. Anat Rec A Discov Mol Cell Evol Biol. 2004 Nov;281(1):1104-10 - PubMed
  23. Vision Res. 1975 Dec;15(12):1363-5 - PubMed
  24. J Morphol. 2005 Jun;264(3):363-80 - PubMed
  25. J Evol Biol. 2010 Sep 1;23(9):1878-85 - PubMed
  26. J Opt Soc Am. 1952 Jul;42(7):492-5 - PubMed
  27. PLoS One. 2013 Nov 08;8(11):e78392 - PubMed
  28. Cereb Cortex. 2007 Jun;17(6):1260-73 - PubMed
  29. J Opt Soc Am A Opt Image Sci Vis. 2002 May;19(5):833-9 - PubMed
  30. J Comp Physiol A. 1999 Apr;184(4):361-9 - PubMed
  31. Science. 1974 Apr 26;184(4135):436-43 - PubMed
  32. ACM Trans Graph. 2010 Mar 1;29(2):null - PubMed
  33. Exp Brain Res. 1984;56(2):263-74 - PubMed

Publication Types