Display options
Share it on

Int J Spine Surg. 2015 Oct 22;9:53. doi: 10.14444/2053. eCollection 2015.

Contribution of Round vs. Rectangular Expandable Cage Endcaps to Spinal Stability in a Cadaveric Corpectomy Model.

International journal of spine surgery

Gregory M Mundis, Robert K Eastlack, Payam Moazzaz, Alexander W L Turner, G Bryan Cornwall

Affiliations

  1. Scripps Clinic Division of Orthopedic Surgery, San Diego, CA ; San Diego Spine Foundation, San Diego, CA.
  2. Orthopaedic Specialists of North County, Tri-City Medical Center Orthopaedic and Spine Institute, Oceanside, CA.
  3. NuVasive, Inc., San Diego, CA.

PMID: 26609508 PMCID: PMC4657610 DOI: 10.14444/2053

Abstract

BACKGROUND: Expandable cages are gaining popularity in anterior reconstruction of the thoracolumbar spine following corpectomy as they can provide adjustable distraction and deformity correction. Rectangular, rather than circular, endcaps provide increased resistance to subsidence by spanning the apophyseal ring; however their impact on construct stability is not known. The objective of this study was to investigate the contribution of expandable corpectomy cage endcap shape (round vs. rectangular) and fixation method (anterior plate vs. posterior pedicle screws) to the stability of an L1 sub-total corpectomy construct.

METHODS: Eight fresh-frozen cadaveric specimens (T11-L3) were subjected to multi-directional flexibility testing to 6 N·m with a custom spine simulator. Test conditions were: intact, L1 sub-total corpectomy defect, expandable cage (round endcap) alone, expandable cage (round endcap) with anterior plate, expandable cage (round endcap) with bilateral pedicle screws, expandable cage (rectangular endcap) alone, expandable cage (rectangular endcap) with anterior plate, expandable cage (rectangular endcap) with bilateral pedicle screws. Range-of-motion across T12-L2 was measured with an optoelectronic system.

RESULTS: The expandable cage alone with either endcap provided significant stability to the corpectomy defect, reducing motion to intact levels in flexion-extension with both endcap types, and in lateral bending with rectangular endcaps. Round endcaps allowed greater motion than intact in lateral bending, and axial rotation ROM was greater than intact for both endcaps. Supplemental fixation provided the most rigid constructs, although there were no significant differences between instrumentation or endcap types.

CONCLUSIONS: These results suggest anterior-only fixation may be adequate when using an expandable cage in a sub-total corpectomy application and choice of endcap type may be driven by other factors such as subsidence resistance.

Keywords: Corpectomy; Stability; biomechanics; endcap shape; expandable cage

References

  1. Spine J. 2010 Nov;10(11):1024-31 - PubMed
  2. Spine (Phila Pa 1976). 2008 Jun 1;33(13):1429-37 - PubMed
  3. Spine (Phila Pa 1976). 2001 Apr 15;26(8):889-96 - PubMed
  4. Spine (Phila Pa 1976). 2004 Jul 1;29(13):1413-9 - PubMed
  5. Eur Spine J. 2000 Dec;9(6):472-85 - PubMed
  6. ScientificWorldJournal. 2012;2012:381814 - PubMed
  7. Spine J. 2011 Sep;11(9):904-8 - PubMed
  8. J Spinal Disord Tech. 2002 Oct;15(5):350-4 - PubMed
  9. Neurosurg Focus. 1999 Jul 15;7(1):e1 - PubMed
  10. Spine (Phila Pa 1976). 2010 Dec 15;35(26 Suppl):S347-54 - PubMed
  11. J Neurosurg Spine. 2008 Apr;8(4):341-6 - PubMed
  12. J Neurosurg Spine. 2006 Mar;4(3):206-12 - PubMed
  13. Spine (Phila Pa 1976). 2003 Aug 15;28(16):1794-801 - PubMed
  14. Case Rep Orthop. 2013;2013:953897 - PubMed
  15. Spine (Phila Pa 1976). 1997 Feb 1;22(3):261-6 - PubMed
  16. J Neurosurg Spine. 2010 Aug;13(2):234-9 - PubMed
  17. J Neurosurg Spine. 2004 Jul;1(1):116-21 - PubMed
  18. Spine (Phila Pa 1976). 2004 Sep 1;29(17 ):1901-8; discussion 1909 - PubMed
  19. Spine (Phila Pa 1976). 2002 Oct 1;27(19):2101-7 - PubMed
  20. J Clin Neurosci. 2014 Sep;21(9):1632-6 - PubMed
  21. J Spinal Disord Tech. 2015 Mar;28(2):53-60 - PubMed
  22. J Orthop Sci. 2009 Jul;14(4):443-9 - PubMed
  23. Spine (Phila Pa 1976). 2009 Jun 15;34(14):1429-35 - PubMed
  24. J Clin Neurosci. 2013 Sep;20(9):1289-94 - PubMed
  25. Neurosurgery. 2007 Oct;61(4):798-808; discussion 808-9 - PubMed
  26. Clin Biomech (Bristol, Avon). 2003 Aug;18(7):631-6 - PubMed
  27. J Neurosurg. 2000 Oct;93(2 Suppl):252-8 - PubMed
  28. Spine (Phila Pa 1976). 1998 Mar 1;23(5):543-50 - PubMed
  29. Neurosurgery. 2010 Jun;66(6 Suppl Operative):314-8; discussion 318 - PubMed
  30. Eur Spine J. 2007 Jun;16(6):813-20 - PubMed
  31. Spine (Phila Pa 1976). 2012 Sep 1;37(19):E1177-81 - PubMed
  32. Spine (Phila Pa 1976). 1994 Aug 1;19(15):1711-22 - PubMed
  33. Eur Spine J. 2005 Mar;14(2):197-204 - PubMed
  34. Spine (Phila Pa 1976). 2010 Dec 15;35(26 Suppl):S338-46 - PubMed
  35. J Spinal Disord Tech. 2005 Feb;18 Suppl:S7-14 - PubMed
  36. Neurosurgery. 2012 Apr;70(4):1017-23; discussion 1023 - PubMed
  37. J Neurosurg Spine. 2006 Aug;5(2):117-25 - PubMed
  38. Neurosurg Focus. 1999 Dec 15;7(6):e4 - PubMed
  39. J Spinal Disord Tech. 2008 May;21(3):216-24 - PubMed
  40. Eur Spine J. 2012 Mar;21(3):546-53 - PubMed
  41. Spine (Phila Pa 1976). 1993 Jun 15;18(8):977-82 - PubMed

Publication Types