Display options
Share it on

Ecol Evol. 2015 Oct 08;5(21):4819-28. doi: 10.1002/ece3.1753. eCollection 2015 Nov.

A comparative approach to testing hypotheses for the evolution of sex-biased dispersal in bean beetles.

Ecology and evolution

Michelle H Downey, Rebecca Searle, Sunil Bellur, Adam Geiger, Brian S Maitner, Johanna R Ohm, Midori Tuda, Tom E X Miller

Affiliations

  1. Department of BioSciences Program in Ecology and Evolutionary Biology Rice University Houston Texas 77005.
  2. Department of BioSciences Program in Ecology and Evolutionary Biology Rice University Houston Texas 77005 ; Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona 85721.
  3. Department of BioSciences Program in Ecology and Evolutionary Biology Rice University Houston Texas 77005 ; Department of Biology Center for Infectious Disease Dynamics Pennsylvania State University University Park Pennsylvania 16803.
  4. Laboratory of Insect Natural Enemies Division of Agricultural Bioresource Sciences Department of Bioresource Sciences Faculty of Agriculture Kyushu University Fukuoka 812-8581 Japan ; Institute of Biological Control Faculty of Agriculture Kyushu University Fukuoka 812-8581 Japan.

PMID: 26640662 PMCID: PMC4662329 DOI: 10.1002/ece3.1753

Abstract

Understanding the selective forces that shape dispersal strategies is a fundamental goal of evolutionary ecology and is increasingly important in changing, human-altered environments. Sex-biased dispersal (SBD) is common in dioecious taxa, and understanding variation in the direction and magnitude of SBD across taxa has been a persistent challenge. We took a comparative, laboratory-based approach using 16 groups (species or strains) of bean beetles (genera Acanthoscelides, Callosobruchus, and Zabrotes, including 10 strains of one species) to test two predictions that emerge from dominant hypotheses for the evolution of SBD: (1) groups that suffer greater costs of inbreeding should exhibit greater SBD in favor of either sex (inbreeding avoidance hypothesis) and (2) groups with stronger local mate competition should exhibit greater male bias in dispersal (kin competition avoidance hypothesis). We used laboratory experiments to quantify SBD in crawling dispersal, the fitness effects of inbreeding, and the degree of polygyny (number of female mates per male), a proxy for local mate competition. While we found that both polygyny and male-biased dispersal were common across bean beetle groups, consistent with the kin competition avoidance hypothesis, quantitative relationships between trait values did not support the predictions. Across groups, there was no significant association between SBD and effects of inbreeding nor SBD and degree of polygyny, using either raw values or phylogenetically independent contrasts. We discuss possible limitations of our experimental approach for detecting the predicted relationships, as well as reasons why single-factor hypotheses may be too simplistic to explain the evolution of SBD.

Keywords: Bean beetle; inbreeding; mating system; polygyny; sex‐biased dispersal

References

  1. Proc Biol Sci. 2002 Dec 7;269(1508):2487-93 - PubMed
  2. J Evol Biol. 2010 Jul;23(7):1374-85 - PubMed
  3. Evolution. 2008 Sep;62(9):2236-49 - PubMed
  4. Am Nat. 2000 Jan;155(1):116-127 - PubMed
  5. Mol Ecol. 2006 Oct;15(12):3541-51 - PubMed
  6. Am Nat. 1999 Sep;154(3):282-292 - PubMed
  7. Proc Biol Sci. 2007 Dec 7;274(1628):3019-25 - PubMed
  8. PLoS One. 2014 Sep 02;9(9):e106268 - PubMed
  9. Mol Ecol. 2005 Jul;14(8):2511-23 - PubMed
  10. Ecology. 2011 Nov;92(11):2141-51 - PubMed
  11. J Anim Ecol. 2011 Jan;80(1):282-93 - PubMed
  12. J Theor Biol. 1999 Oct 21;200(4):345-64 - PubMed
  13. Evolution. 2008 Mar;62(3):622-30 - PubMed
  14. Proc Biol Sci. 2006 Feb 22;273(1585):479-84 - PubMed
  15. Evolution. 2011 Jan;65(1):246-58 - PubMed
  16. Am Nat. 2011 May;177(5):549-61 - PubMed
  17. Am Nat. 1998 Aug;152(2):204-24 - PubMed
  18. Evolution. 2003 Mar;57(3):638-45 - PubMed
  19. J Anim Ecol. 2014 Nov;83(6):1256-67 - PubMed
  20. Proc Biol Sci. 1998 Mar 22;265(1395):483-8 - PubMed
  21. Ecol Evol. 2015 Oct 08;5(21):4819-28 - PubMed
  22. Mol Ecol. 2002 Aug;11(8):1491-8 - PubMed
  23. Mol Ecol. 2007 Apr;16(8):1559-78 - PubMed
  24. Proc Biol Sci. 2010 May 7;277(1686):1345-52 - PubMed
  25. Evolution. 2007 Jan;61(1):194-201 - PubMed
  26. Mol Ecol. 2008 Jul;17(14):3234-42 - PubMed
  27. Trends Ecol Evol. 1987 Oct;2(10):295-9 - PubMed
  28. Am Nat. 2005 Dec;166(6):708-21 - PubMed
  29. Ecol Lett. 2013 Mar;16(3):354-61 - PubMed
  30. Mol Ecol. 2004 Jan;13(1):67-80 - PubMed

Publication Types