Display options
Share it on

Nat Commun. 2015 Dec 08;6:8958. doi: 10.1038/ncomms9958.

Magneto-optical investigation of spin-orbit torques in metallic and insulating magnetic heterostructures.

Nature communications

Mohammad Montazeri, Pramey Upadhyaya, Mehmet C Onbasli, Guoqiang Yu, Kin L Wong, Murong Lang, Yabin Fan, Xiang Li, Pedram Khalili Amiri, Robert N Schwartz, Caroline A Ross, Kang L Wang

Affiliations

  1. Department of Electrical Engineering, Device Research Laboratory, University of California, Los Angeles, California 90095, USA.
  2. Departmentof Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

PMID: 26643048 PMCID: PMC4686864 DOI: 10.1038/ncomms9958

Abstract

Manipulating magnetism by electric current is of great interest for both fundamental and technological reasons. Much effort has been dedicated to spin-orbit torques (SOTs) in metallic structures, while quantitative investigation of analogous phenomena in magnetic insulators remains challenging due to their low electrical conductivity. Here we address this challenge by exploiting the interaction of light with magnetic order, to directly measure SOTs in both metallic and insulating structures. The equivalency of optical and transport measurements is established by investigating a heavy-metal/ferromagnetic-metal device (Ta/CoFeB/MgO). Subsequently, SOTs are measured optically in the contrasting case of a magnetic-insulator/heavy-metal (YIG/Pt) heterostructure, where analogous transport measurements are not viable. We observe a large anti-damping torque in the YIG/Pt system, revealing its promise for spintronic device applications. Moreover, our results demonstrate that SOT physics is directly accessible by optical means in a range of materials, where transport measurements may not be possible.

References

  1. Phys Rev Lett. 2008 Jul 18;101(3):036601 - PubMed
  2. Nature. 2010 Mar 11;464(7286):262-6 - PubMed
  3. Phys Rev Lett. 2014 Nov 7;113(19):197203 - PubMed
  4. Nano Lett. 2014 Jun 11;14(6):3459-65 - PubMed
  5. Phys Rev Lett. 2013 May 17;110(20):206601 - PubMed
  6. Nature. 2014 Jul 24;511(7510):449-51 - PubMed
  7. Nat Mater. 2012 Dec;11(12):1028-31 - PubMed
  8. Phys Rev Lett. 2014 Jul 18;113(3):037203 - PubMed
  9. Phys Rev Lett. 2014 Jul 11;113(2):027601 - PubMed
  10. Science. 2012 May 4;336(6081):555-8 - PubMed
  11. Nature. 2011 Aug 11;476(7359):189-93 - PubMed
  12. Nat Mater. 2013 Jul;12(7):611-6 - PubMed
  13. Nat Commun. 2014;5:3042 - PubMed
  14. Nat Nanotechnol. 2013 Aug;8(8):587-93 - PubMed
  15. Phys Rev Lett. 2012 Aug 31;109(9):096602 - PubMed
  16. Nat Mater. 2013 Mar;12(3):240-5 - PubMed
  17. Phys Rev Lett. 2011 Sep 30;107(14):146602 - PubMed
  18. Nat Mater. 2010 Mar;9(3):230-4 - PubMed
  19. Phys Rev Lett. 1996 Jul 22;77(4):743-746 - PubMed
  20. Nat Mater. 2014 Jul;13(7):699-704 - PubMed
  21. Nat Mater. 2010 Nov;9(11):894-7 - PubMed
  22. Nat Nanotechnol. 2014 Jul;9(7):548-54 - PubMed
  23. Phys Rev Lett. 2014 Jun 13;112(23):236601 - PubMed
  24. Phys Rev Lett. 2014 Mar 14;112(10):106602 - PubMed
  25. Nat Nanotechnol. 2013 Jul;8(7):527-33 - PubMed
  26. Phys Rev Lett. 2011 Jan 21;106(3):036601 - PubMed

Publication Types