Display options
Share it on

Sci Rep. 2015 Nov 27;5:17277. doi: 10.1038/srep17277.

Extreme events in multilayer, interdependent complex networks and control.

Scientific reports

Yu-Zhong Chen, Zi-Gang Huang, Hai-Feng Zhang, Daniel Eisenberg, Thomas P Seager, Ying-Cheng Lai

Affiliations

  1. School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA.
  2. Institute of Computational Physics and Complex Systems, Lanzhou University, Lanzhou Gansu 730000, China.
  3. School of Mathematical Science, Anhui University, Hefei 230039, China.
  4. School of Sustainable Engineering and Built Environment, Arizona State University, Tempe, AZ 85287, USA.
  5. Department of Physics, Arizona State University, Tempe, Arizona 85287, USA.

PMID: 26612009 PMCID: PMC4661526 DOI: 10.1038/srep17277

Abstract

We investigate the emergence of extreme events in interdependent networks. We introduce an inter-layer traffic resource competing mechanism to account for the limited capacity associated with distinct network layers. A striking finding is that, when the number of network layers and/or the overlap among the layers are increased, extreme events can emerge in a cascading manner on a global scale. Asymptotically, there are two stable absorption states: a state free of extreme events and a state of full of extreme events, and the transition between them is abrupt. Our results indicate that internal interactions in the multiplex system can yield qualitatively distinct phenomena associated with extreme events that do not occur for independent network layers. An implication is that, e.g., public resource competitions among different service providers can lead to a higher resource requirement than naively expected. We derive an analytical theory to understand the emergence of global-scale extreme events based on the concept of effective betweenness. We also articulate a cost-effective control scheme through increasing the capacity of very few hubs to suppress the cascading process of extreme events so as to protect the entire multi-layer infrastructure against global-scale breakdown.

References

  1. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Aug;70(2 Pt 2):026109 - PubMed
  2. Phys Rev Lett. 2012 Dec 14;109(24):248701 - PubMed
  3. Sci Rep. 2014 Oct 27;4:6787 - PubMed
  4. Nature. 2010 Apr 15;464(7291):1025-8 - PubMed
  5. Phys Rev Lett. 2013 Jan 11;110(2):028701 - PubMed
  6. Science. 1999 Oct 15;286(5439):509-12 - PubMed
  7. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 2):056102 - PubMed
  8. Sci Rep. 2012;2:620 - PubMed
  9. Phys Rev Lett. 2006 Jun 2;96(21):218702 - PubMed
  10. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066134 - PubMed
  11. Phys Rev Lett. 2011 May 6;106(18):188701 - PubMed
  12. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):056120 - PubMed
  13. Sci Rep. 2014;4:5097 - PubMed
  14. Phys Rev Lett. 2001 Dec 31;87(27 Pt 1):278701 - PubMed
  15. Phys Rev Lett. 2014 Jun 20;112(24):248701 - PubMed
  16. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 2):036103 - PubMed
  17. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 2):056104 - PubMed
  18. Phys Rev Lett. 2013 Aug 2;111(5):058702 - PubMed
  19. Sci Rep. 2013;3:2483 - PubMed
  20. Sci Rep. 2014;4:4436 - PubMed
  21. Nature. 2010 Apr 15;464(7291):984-5 - PubMed
  22. Sci Rep. 2014 Aug 18;4:6121 - PubMed
  23. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):012808 - PubMed
  24. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Sep;88(3):032807 - PubMed
  25. Phys Rev Lett. 2008 May 23;100(20):208701 - PubMed
  26. Sci Rep. 2013 Nov 21;3:3289 - PubMed
  27. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 2):056113 - PubMed
  28. Phys Rev Lett. 2012 Sep 21;109(12):128703 - PubMed
  29. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jul;88(1):014801 - PubMed
  30. Phys Rev Lett. 2004 Mar 19;92(11):118701 - PubMed

Publication Types