Display options
Share it on

Int J Mass Spectrom. 2015 Nov 15;390:137-145. doi: 10.1016/j.ijms.2015.07.008. Epub 2015 Jul 23.

Enhancing Protein Disulfide Bond Cleavage by UV Excitation and Electron Capture Dissociation for Top-Down Mass Spectrometry.

International journal of mass spectrometry

Piriya Wongkongkathep, Huilin Li, Xing Zhang, Rachel R Ogorzalek Loo, Ryan R Julian, Joseph A Loo

Affiliations

  1. Department of Chemistry and Biochemistry, University of California-Los Angeles Los Angeles, CA 90095.
  2. Department of Biological Chemistry, University of California-Los Angeles Los Angeles, CA 90095.
  3. Department of Chemistry, University of California-Riverside, Riverside, CA 92521.
  4. Department of Chemistry and Biochemistry, University of California-Los Angeles Los Angeles, CA 90095 ; Department of Biological Chemistry, University of California-Los Angeles Los Angeles, CA 90095 ; UCLA/DOE Institute of Genomics and Proteomics, University of California-Los Angeles Los Angeles, CA 90095.

PMID: 26644781 PMCID: PMC4669582 DOI: 10.1016/j.ijms.2015.07.008

Abstract

The application of ion pre-activation with 266 nm ultraviolet (UV) laser irradiation combined with electron capture dissociation (ECD) is demonstrated to enhance top-down mass spectrometry sequence coverage of disulfide bond containing proteins. UV-based activation can homolytically cleave a disulfide bond to yield two separated thiol radicals. Activated ECD experiments of insulin and ribonuclease A containing three and four disulfide bonds, respectively, were performed. UV-activation in combination with ECD allowed the three disulfide bonds of insulin to be cleaved and the overall sequence coverage to be increased. For the larger sized ribonuclease A with four disulfide bonds, irradiation from an infrared laser (10.6 µm) to disrupt non-covalent interactions was combined with UV-activation to facilitate the cleavage of up to three disulfide bonds. Preferences for disulfide bond cleavage are dependent on protein structure and sequence. Disulfide bonds can reform if the generated radicals remain in close proximity. By varying the time delay between the UV-activation and the ECD events, it was determined that disulfide bonds reform within 10-100 msec after their UV-homolytic cleavage.

References

  1. Int J Mass Spectrom. 2015 Feb 1;377:546-556 - PubMed
  2. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9075-8 - PubMed
  3. Anal Chem. 2003 Jul 1;75(13):3219-25 - PubMed
  4. J Proteome Res. 2011 Mar 4;10(3):1293-304 - PubMed
  5. ChemistryOpen. 2012 Dec;1(6):null - PubMed
  6. Anal Chem. 2010 Jul 15;82(14):6079-89 - PubMed
  7. J Am Chem Soc. 2011 May 11;133(18):6997-7006 - PubMed
  8. J Am Soc Mass Spectrom. 2009 May;20(5):763-71 - PubMed
  9. Int J Mass Spectrom. 2011 Nov 1;308(1):133-136 - PubMed
  10. Anal Chem. 1993 Nov 1;65(21):3015-23 - PubMed
  11. J Am Soc Mass Spectrom. 2013 Dec;24(12):1980-7 - PubMed
  12. Anal Chem. 2011 Sep 1;83(17):6455-8 - PubMed
  13. Anal Biochem. 2008 Jun 1;377(1):95-104 - PubMed
  14. J Am Soc Mass Spectrom. 2013 Jan;24(1):125-33 - PubMed
  15. Angew Chem Int Ed Engl. 2009;48(39):7130-7 - PubMed
  16. Science. 2006 Oct 6;314(5796):65-6 - PubMed
  17. J Am Soc Mass Spectrom. 2008 Mar;19(3):344-57 - PubMed
  18. Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33 - PubMed
  19. J Am Chem Soc. 2014 Sep 24;136(38):13363-70 - PubMed
  20. Biochemistry. 2000 Apr 18;39(15):4207-16 - PubMed
  21. J Am Soc Mass Spectrom. 2012 Feb;23(2):310-20 - PubMed
  22. Chem Soc Rev. 2013 Jun 21;42(12):5014-30 - PubMed
  23. Anal Chem. 2012 Apr 17;84(8):3838-42 - PubMed
  24. Science. 1990 Apr 13;248(4952):201-4 - PubMed
  25. Angew Chem Int Ed Engl. 2005 Oct 7;44(39):6399-403 - PubMed
  26. Expert Rev Proteomics. 2015 Apr;12(2):115-23 - PubMed
  27. J Am Soc Mass Spectrom. 2008 Jun;19(6):780-9 - PubMed
  28. J Am Soc Mass Spectrom. 2008 Aug;19(8):1045-53 - PubMed
  29. Proteins. 2003 Jun 1;51(4):498-503 - PubMed
  30. Rapid Commun Mass Spectrom. 2014 Dec 30;28(24):2729-34 - PubMed
  31. J Am Soc Mass Spectrom. 2014 Oct;25(10):1675-93 - PubMed
  32. Anal Biochem. 2002 Dec 1;311(1):1-9 - PubMed
  33. Int J Mass Spectrom. 2011 Mar 1;300(2-3):118-122 - PubMed
  34. Anal Chem. 2007 Oct 15;79(20):7596-602 - PubMed
  35. Nature. 1989 Nov 16;342(6247):291-3 - PubMed
  36. J Am Soc Mass Spectrom. 2010 Jan;21(1):127-31 - PubMed
  37. Arch Intern Med. 1969 Mar;123(3):229-36 - PubMed
  38. Mass Spectrom Rev. 2002 May-Jun;21(3):183-216 - PubMed
  39. J Biol Chem. 2008 Jun 6;283(23):16194-205 - PubMed
  40. J Am Chem Soc. 2012 Dec 19;134(50):20279-81 - PubMed
  41. J Mass Spectrom. 2011 Aug;46(8):830-9 - PubMed
  42. Anal Chem. 2014 Jun 3;86(11):5376-82 - PubMed
  43. Anal Chem. 2012 Apr 3;84(7):3339-46 - PubMed

Publication Types

Grant support