Display options
Share it on

J Phys Chem Lett. 2016 Jan 21;7(2):332-8. doi: 10.1021/acs.jpclett.5b02617. Epub 2016 Jan 08.

Breaking the Symmetry in Molecular Nanorings.

The journal of physical chemistry letters

Juliane Q Gong, Ludovic Favereau, Harry L Anderson, Laura M Herz

Affiliations

  1. Department of Physics, Clarendon Laboratory, University of Oxford , Parks Road, Oxford OX1 3PU, United Kingdom.
  2. Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom.

PMID: 26735906 PMCID: PMC4745607 DOI: 10.1021/acs.jpclett.5b02617

Abstract

Because of their unique electronic properties, cyclic molecular structures ranging from benzene to natural light-harvesting complexes have received much attention. Rigid π-conjugated templated porphyrin nanorings serve as excellent model systems here because they possess well-defined structures that can readily be controlled and because they support highly delocalized excitations. In this study, we have deliberately modified a series of six-porphyrin nanorings to examine the impact of lowering the rotational symmetry on their photophysical properties. We reveal that as symmetry distortions increase in severity along the series of structures, spectral changes and an enhancement of radiative emission strength occur, which derive from a transfer of oscillator strength into the lowest (k = 0) state. We find that concomitantly, the degeneracy of the dipole-allowed first excited (k = ±1) state is lifted, leading to an ultrafast polarization switching effect in the emission from strongly symmetry-broken nanorings.

References

  1. Science. 1999 Jul 16;285(5426):400-2 - PubMed
  2. Angew Chem Int Ed Engl. 2000 Oct 2;39(19):3481-3486 - PubMed
  3. Biophys J. 2001 Mar;80(3):1591-603 - PubMed
  4. Biophys J. 2001 Mar;80(3):1604-14 - PubMed
  5. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Mar;65(3 Pt 1):031916 - PubMed
  6. Biochemistry. 2003 Sep 9;42(35):10354-60 - PubMed
  7. Science. 2003 Dec 12;302(5652):1969-72 - PubMed
  8. EMBO J. 2004 Feb 25;23(4):690-700 - PubMed
  9. Chemistry. 2006 Feb 1;12(5):1319-27 - PubMed
  10. Q Rev Biophys. 2006 Aug;39(3):227-324 - PubMed
  11. Angew Chem Int Ed Engl. 2007;46(17):3122-5 - PubMed
  12. Phys Rev Lett. 2007 Jan 12;98(2):027402 - PubMed
  13. Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6661-5 - PubMed
  14. Chem Soc Rev. 2007 Jun;36(6):831-45 - PubMed
  15. J Biol Chem. 2008 May 16;283(20):14002-11 - PubMed
  16. Angew Chem Int Ed Engl. 2008;47(27):4993-6 - PubMed
  17. J Am Chem Soc. 2008 Aug 6;130(31):10171-8 - PubMed
  18. J Am Chem Soc. 2008 Dec 31;130(52):17646-7 - PubMed
  19. J Am Chem Soc. 2011 Nov 2;133(43):17262-73 - PubMed
  20. Science. 2013 Jun 21;340(6139):1448-51 - PubMed
  21. Nat Chem. 2013 Nov;5(11):964-70 - PubMed
  22. J Phys Chem B. 2014 Jul 17;118(28):8352-63 - PubMed
  23. J Am Chem Soc. 2014 Jun 11;136(23):8217-20 - PubMed
  24. Nano Lett. 2014 Nov 12;14(11):6539-46 - PubMed
  25. J Am Chem Soc. 2015 Jan 14;137(1):245-58 - PubMed
  26. J Am Chem Soc. 2015 May 27;137(20):6670-9 - PubMed
  27. Angew Chem Int Ed Engl. 2015 Jun 15;54(25):7344-8 - PubMed
  28. J Phys Chem C Nanomater Interfaces. 2015 Mar 19;119(11):6414-6420 - PubMed
  29. J Phys Chem Lett. 2015 Feb 5;6(3):451-6 - PubMed
  30. J Phys Chem Lett. 2015 Apr 2;6(7):1170-6 - PubMed
  31. J Phys Chem Lett. 2014 Dec 18;5(24):4356-61 - PubMed
  32. J Am Chem Soc. 2015 Nov 18;137(45):14256-9 - PubMed
  33. Chem Sci. 2015 Jan 1;6(1):181-189 - PubMed

Publication Types