Display options
Share it on

Nat Commun. 2015 Dec 18;6:10007. doi: 10.1038/ncomms10007.

Polyoxometalate-based homochiral metal-organic frameworks for tandem asymmetric transformation of cyclic carbonates from olefins.

Nature communications

Qiuxia Han, Bo Qi, Weimin Ren, Cheng He, Jingyang Niu, Chunying Duan

Affiliations

  1. State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
  2. Key Laboratory of Polyoxometalate Chemistry of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
  3. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China.

PMID: 26678963 PMCID: PMC4703842 DOI: 10.1038/ncomms10007

Abstract

Currently, great interest is focused on developing auto-tandem catalytic reactions; a substrate is catalytically transferred through mechanistically distinct reactions without altering any reaction conditions. Here by incorporating a pyrrolidine moiety as a chiral organocatalyst and a polyoxometalate as an oxidation catalyst, a powerful approach is devised to achieve a tandem catalyst for the efficient conversion of CO2 into value-added enantiomerically pure cyclic carbonates. The multi-catalytic sites are orderly distributed and spatially matched in the framework. The captured CO2 molecules are synergistically fixed and activated by well-positioned pyrrolidine and amine groups, providing further compatibility with the terminal W=O activated epoxidation intermediate and driving the tandem catalytic process in a single workup stage and an asymmetric fashion. The structural simplicity of the building blocks and the use of inexpensive and readily available chemical reagents render this approach highly promising for the development of practical homochiral materials for CO2 conversion.

References

  1. Org Biomol Chem. 2005 Feb 7;3(3):538-41 - PubMed
  2. ChemSusChem. 2012 Aug;5(8):1435-42 - PubMed
  3. Angew Chem Int Ed Engl. 2014 Mar 3;53(10):2615-9 - PubMed
  4. J Am Chem Soc. 2011 Oct 5;133(39):15312-5 - PubMed
  5. Nat Commun. 2012;3:604 - PubMed
  6. ACS Appl Mater Interfaces. 2013 Jun 26;5(12):5468-77 - PubMed
  7. Angew Chem Int Ed Engl. 2006 May 5;45(19):3093-7 - PubMed
  8. Nat Chem. 2014 Jan;6(1):22-7 - PubMed
  9. Angew Chem Int Ed Engl. 2012 May 7;51(19):4662-5 - PubMed
  10. J Am Chem Soc. 2015 Mar 11;137(9):3197-200 - PubMed
  11. Angew Chem Int Ed Engl. 2008;47(33):6138-71 - PubMed
  12. J Am Chem Soc. 2004 Sep 8;126(35):11030-9 - PubMed
  13. J Am Chem Soc. 2009 May 13;131(18):6326-7 - PubMed
  14. Angew Chem Int Ed Engl. 2006 Feb 27;45(10):1520-43 - PubMed
  15. J Org Chem. 2014 Oct 17;79(20):9771-7 - PubMed
  16. Nat Chem. 2014 Jan;6(1):12-3 - PubMed
  17. Science. 2010 Oct 29;330(6004):650-3 - PubMed
  18. J Am Chem Soc. 2003 Jun 25;125(25):7596-601 - PubMed
  19. J Am Chem Soc. 2012 Sep 12;134(36):14991-9 - PubMed
  20. Nat Chem. 2010 Mar;2(3):167-78 - PubMed
  21. Chem Rev. 2012 Feb 8;112(2):1196-231 - PubMed
  22. Chem Soc Rev. 2014 Jul 7;43(13):4615-32 - PubMed
  23. J Am Chem Soc. 2011 Aug 17;133(32):12849-57 - PubMed
  24. J Am Chem Soc. 2013 Jul 17;135(28):10186-9 - PubMed
  25. Chem Commun (Camb). 2014 Nov 18;50(89):13773-6 - PubMed
  26. J Am Chem Soc. 2013 Nov 13;135(45):17105-10 - PubMed
  27. J Am Chem Soc. 2012 Apr 25;134(16):7056-65 - PubMed
  28. Chem Rev. 2013 Jan 9;113(1):734-77 - PubMed
  29. J Am Chem Soc. 2014 Nov 12;136(45):15861-4 - PubMed
  30. Science. 2006 Apr 14;312(5771):251-4 - PubMed
  31. Chem Rev. 2014 Aug 27;114(16):8199-256 - PubMed
  32. J Am Chem Soc. 2012 Oct 24;134(42):17380-3 - PubMed

Publication Types